Complementary Lecture Notes on Computer

Networks (WIP)
Chapter 1

(C) 2013, 2014 José Maria Foces Moran, lecturer. University of Le6n

April 4, 2014

Revision: 3@

Introduction

These notes aim to complement the lectures of the undergraduate course on Computer
Networks. Hereon you will find outstanding concepts commented and exercises illus-
trated.

Clarifications about network performance

Latency and bandwidth are two important performance measures used in computer sys-
tems and in computer networks. Latency is how much time it takes to perform an oper-
ation and bandwidth is a rate, the ratio of the number of operations performed and the
time they took. Let’s consider how much time it takes to transfer one bit of information
from a computer A that is directly connected to computer B.

The first component of the latency in the case of direct connection is the propagation delay
Tp or the time it takes for an electromagnetic signal to propagate from A to B through the
considered communication medium. Each physical communication medium propagates
electromagnetic signals at a fraction of ¢, the speed of light in empty space, this fraction is

1

Chema
Cross-Out

Chema
Sticky Note
V.1.9.0
· Latex, base document
· Ex. 4.b
· 2BD product

a property of that medium. Propagation delay is also known as one-way delay. Bandwidth
has a strong dependency on the physical properties of the communication medium, it
is the standardized width of that medium’s transfer function: a bigger bandwidth will
allow higher transmission speeds as we will study in the chapter 2 section devoted to the
Shannon-Hartley theorem.

Another important performance measure, derived from Tp is the round-trip time or RTT.
Assuming that the propagation times are the same in both directions, then RTT = T, +
Ty. Alongside with bandwidth, this performance measure plays an important role in the
design of end-to-end reliable transfer protocols such as TCP. Specifically, if we want to
attain a maximum utilization of the network we will have to maximize the product delay
x bandwidth. Depending on the specific circumstances, that delay can be the one-way
delay or the RTT.

Fig. 1 graphically illustrates these concepts. On computer A we need to transfer one bit of
information to computer B. The first we need to do is to copy that bit from memory to the
signalling electronics on the network interface which will translate it into a waveform.
The vertical red line represents the time it takes to perform this translation of a binary
symbol into a waveform, we refer to this time as transmission time. Intuitively, you will
readily see that longer transmission times will negatively affect the transmission speed
that we can safely attain, conversely, if you attempt to transmit with increasingly shorter
transmission times, the resulting waveforms will not faithfully represent the original bits
of information upon arrival at B. What is the limit to how fast we can transform bits into
waveforms? We will study these factors with sufficient detail in ch. 2, for the time being,
it will suffice to say that the tranmission medium bandwidth limits our ability to transmit
with increasingly shorter times. Shorter tranmission times or higher transmission speeds
demand higher bandwidth; bandwidth is physically limited, always.

Continuing with Fig.1, once we have successfully transmitted one bit, the resulting wave-
form begins to propagate through the medium, this is represented by the sky blue arrow.
How long does it take for the waveform to propagate from A to B? Obviously it depends
directly on the length of the link and inversely on the propagation speed. The sum of the
transmission time (red) and the propagation time (sky blue) is the latency: how long it
takes for a bit to be transferred from A to B. As you can see, latency in this example has
the two components mentioned: transmission time and propagation time.

2

direct connection link

Fig. 1. Latency in transferring one bit from A to B when they are directly connected

In the context of a non-direct connection between A and B, these concepts receive dif-
ferent names and the definitions themselves are different than those that apply in the
direct-connection case. Many times they are used interchangeably. When the two hosts
considered are not directly connected, we assume that they communicate over an inter-
network and, therefore, the channel in between is not a physical one, but a logical one.

Let’s study the case of a logical channel between A and B, i.e., an arbitrary interconnection
of links. In this case, the equivalent to the propagation time is named one-way delay, the
time it takes for one bit to be transferred from A to B; bandwidth in this case is named
throughput and it is the effective maximum transmission speed (bits/sec) achievable from
end to end (A -> network -> B).

The round-trip time of a logical channel is an essential parameter in the operation of
certain protocols, TCP, for example. Let’s assume that A and B are connected by a logical

3

channel, then, the RTT is the sum of the two one-way delays: RTT = delayone—way +
delayone—way- Normally, for the transmission of one bit at A (red) the transmission time
will be much smaller than the delay, thus, the biggest contribution to latency will come
from the one-way delay, not from the transmission time. In the problems explained in
these notes, we will see that when a big amount of data is transferred from A to B, the
one-way delay due to one bit’s propagation is hidden in the tranmission times of the bits
that are to be transmitted right after the one that is propagating. In conclusion, if several
transmission times fit within a one-way delay, when transferring a big amount of data it’s
the transmission times that account for the total transfer time, consequently, the one-way
delay is negligible.

Mesauring the RTT

To measure the RTT (End-to-end RTT) between a client thread (A) and a server thread (B),
according to the above definition, we will have to guarantee that the time between the
reception of the incoming bit at B and it bouncing back a reponse bit directed towards A,
should be reduced to a minimum, ideally 0 (See the red-colored * in the latter figure). This
amounts to guaranteeing in thread B that we perform virtually no computation between
receiving the bit and sending the response back, thereby reducing its time length as much
as possible, i.e. imposing the least influence on the RTT.

Exercise 4

Calculate the total time required to transfer a 1.5 MB file in the following cases, assuming
an RTT of 80ms, a packet size of 1 KB data, and an initial 2CERTT of “handshaking” before
data is sent:

¢ (a) The bandwidth is 10 Mbps, and data packets can be sent continuously

In order to simplify the exercise we will assume a direct connection between A and
B, therefore, in computing the results we will be using bandwidths and propagation
times. A and B are computer systems, A has a 1.5MB file that is to be transferred
to B and we are requested to compute the whole amount of time it takes to transfer
the file. That the bandwidth is 10 Mbps is to be understood in the sense that we are
allowed to transmit at that speed, for, in fact we could have a 10 Mbps channel and
transmit at a speed of 500 Kbps. Therefore we are using a transmission speed of 10
Mbps, we denote that speed as bandwidth BW = 10 Mbps.

Since in (a) packets can be sent in a continuous fashion, i.e., with no pause in be-
tween, in fact we will transmit the whole bunch of bits (1.5MB) in a single, big
block. The exercise also specifies that, before any bit can be transmitted, a hand-
shake takes place which consumes a length of time of 2 x RTT. For the time being,
the handshake is an initial series of information interchanges by which transmitter
and receiver fix some communication protocol parameters before proceeding to the
file transfer itself. We will delve into more detail regarding that handshake in ch. 2
and others. After the handshake, A begins transferring the first bit and the rest at
the speed specified in the bandwidth. Observe that the first bit arrives at B Tprop
seconds after it was transmitted at A. Observe also that, while bit 1 is being prop-
agated, bit 2 begins transmission/propagation and the same with the rest of bits
(Other subsequent bits transmission times could be hidden in the propagation time

5

of one bit, depending on the ratio of transmission time to propagation time at use).
Figure 3 is a representation of the times mentioned. The total time will be the sum
of all the times in between the start of the handshake at B and the reception of the
last bit from the 1.5MB file:

Tiotar = 2 X RTT + Npits X Tiransm + Tprop
Let’s convert the file size of 1.5MB to bits:

Nyits = 1.5MB = 1.5 x 220Byteis = 12 x 2%bits

and calculate the transmission time it takes to transmit a single bit:

_ 1
Ttransm - M

sec

— 1 sec _ 1 sec _ —6sec
= BW it — Toxioe b — 0-1 X 10775z

Now, we can evaluate the total time consumed by the continuous 1.5MB transfer:

Tiotar = 2 X 80 x 10 3sec + 12 x 220bits x 0.1 x 10705% + 80 % 10~ 3sec = 1.4582sec
0 bit 2

L)

Total time = 2 x RTT + N x Ttransm + Tprop

Fig. 3. Transmission and propagation times in a direct link

¢ (b) Bandwidth is 10 Mbps, but after sending each data packet, the transmitter must
wait one RTT before sending the next one. Fig. 4 contains a timeline representation
of this exercise section, the initial handshake is light blue at the top, then transfer of
of first packet begins. By contrast with section (a), packet transfer is not continuous,
after each packet the transmitter inserts a pause the length of an RTT (Represented
in orange). Inspecting the timeline on Fig. 4, we can derive the total time:

Tiotar =2 X RTT + (Npack - 1) X (Tlpack + %) + Tlpack

where Ty, represents the time necessary to transfer a packet (a.k.a. Packet Trans-
fer Latency) and Ny, is the total number of packets contained in the 1.5MB (This
section specifies that the transmitter will packetize the information before transfer-
ring it using a packet size of 1KB). Now, we can calculate the number of packets:

Npack = podrize = %z = 1oMB — 1.5%%8 = 1.5 x 20ackets = 1536packets

For calculating the time necessary to transfer a full packet we will study the timeline
in fig. 4 (Typacr includes the transmission times of all the bits belonging to the packet
plus the propagation time of the first bit). Observe that, effectively, after receiving
each packet, reception of packets’ bits is paused for %sec, not the full RTT that we
might expect, the reason is that the propagation of the last bit of a packet is concur-
rent with the first half of the RTT pause inserted by the transmitter between any two
back-to-back packets. According to the timeline on the right of fig. 4 we have:

Tlpack = Transm + Tprop + (Nbits—packet - 1) X Ttransm

Tlpack = Nbits—packet X Ttransm + Tprop

Let’s begin by calculating the number of bits per packet:
=1 KB

. 210 8bits __ bits
Nblts—packet packet XIg X4 = 8192packet

No, we can apply the formula above to calculate the packet transfer latency:

T pack = 81925585 5 0.1 x 10705 + 8 5 10~ 3secyrop = 0.040819sec

Finally, we calculate the total time taken by the receiver to collect the 1.5MB; as
in the previous case, the file transfer will start with the handshake, then, the first
packet will be transferred, bit by bit and introduce a pause of length 2 x RTT and
repeat the process through the last packet (Obviously, the 2 x RTT pause is not nec-

essary after the last packet).
Tiotal = 2 % 80 x 1073 + (1536 — 1) x (0.040819 + 40 x 10~%) + 0.040819
Tiotar = 124.2579sec

Before finishing this section, we might want to quantify the influence of the inter-
packet pauses on the overall performance attained in this case, for, we are sure that
the throughput (The effective transfer rate achieved) in this case (b) must necessarily
be less than in case (a). The throughput results of the ratio: total file size transferred
by the total time just calculated. Let’s calculate it:

Throughput = phis = 1222 bits — 101264.483bps = 101.264Kbps

What do you think about the result? Is the throughput rather low? The bandwidth

is 10Mbps and throughput represents barely a %ﬁﬁps x 100% = 1%

B
G

pegin file transfer --------- e S S S i s .- beegin Packet 1 transfer
fransmit bt 1 Tirares

transmit bt 2

fransmit bit 3

1 of packet 1 received
- wennnnessshit 2 of packet 1 received
transmit kit M e
bosssmsmmmnnnnse s s s rennnnns Poket | transferred

__________ begn Packet 2 transfer

.................................... Facket 2 transferred

Total time = 2 x RTT + (Npack - 1) x (T1pack + RTT/2)+ T1pack

Fig. 4. A packetized transfer with a pause in between two consecutive packets

e (c) The link allows infinitely fast transmit (That means infinite bandwidth), but lim-
its throughput (not bandwidth) such that only 20 packets can be sent per RTT

9

This exercise statement means that we can transmit as fast as we can but, in fact,
the medium will only accept 20 packets sent within a time of RTT seconds, that can
be summarized by stating the the maximum attainable throughput is the number of
bits per second resulting from:

20 packets
80x10-3 sec

Throughputay =

_ 20 packets bits __ 6 bit
Throughput ., = 805103 sec -8192% = 2.048 x 10°%2
In this case, as in case (a), the transmission is continuous, i.e., the 1.5MB are trans-
ferred from A to B without pause, however, by contrast to (a) the attainable through-
put is Throughput .y, then the calculations are the same as in (a).

(d) Zero transmit time as in (c), but during the first RIT we can send one packet,
during the second RTT we can send two packets, during the third we can send four
(231), etc. (A justification for such an exponential increase will be given in Chapter
6.)

In this case throughput is being increased at each succeding packet according to a
multiplicative law, therefore, in order for you to calculate the total time you will
have to calculate the number of packets sent at each time instant which is governed
by a geometric progression. We recommend you to complete the calculations and
check the result with the textbook soutions section. Also, for the time being, you can
assume that the network is completely stable and that therefore, the RTT is constant
(In general, this is not true, for, when the offered load is over some threshold, the
queuing delays and packet loss will grow fast which will cause the RTT to grow
unbounded).

Exercise 14

Suppose a 128-kbps point-to-point link is set up between the Earth and a rover on Mars.
The distance from the Earth to Mars (when they are closest together) is approximately 55
Gm, and data travels over the link at the speed of light—3 x 1082,

e a) Calculate the minimum RTT for the link

The RTT is the Round-trip-time, or the time it takes for 1 bit to travel to the des-
tination and then back to the sender, normally we assume that RTT = 2 x T, =

10

2 X delayone—way according to the definitions given in the textbook ch.1 and the in-
troductory sections of this document. The requested minimum RTT will occur when
the distance from the Earth to Mars is minimum:

Let’s denote the speed of light in empty space c, then: RTT,,;;, = 2 - Goin=earth—mars

C
—235;5;0%(2’” = 2-183.33sec = 366.66s¢ec

sec

b) Calculate the delay x bandwidth product for the link

Recall the significance of this product: If we want to maximize network utiliza-
tion, the number of bits that should be in-flight from A to B before the first of them
has arrived at B, is the delay x bandwidth product. Delay in this case is the one-way
delay, but, normally when speaking of the delay x product, delay is the RTT, not the
one-way delay. In all exercises we will make clear which definition of delay must
be used: either the one-way delay or the RTT.

delay x bandwidth = delayone—way X bandwidth = % x BW

183.33s¢c x 128Kt . 100 — 23466240bits - gib- - M = 2.7974MB

sec bits

c) A camera on the rover takes pictures of its surroundings and sends these to Earth.
How quickly after a picture is taken can it reach Mission Control on Earth? Assume
that each image is 5MB in size (The textbook’s exercise specifies 5Mb which, accord-
ing to the textbook solution, is a mistake)

The transfer process of each image is continuous, i.e., no packetization is at play
here. The transfer scheme is the same as that used in exercise 4 section (a), we will
perform the simple calculation according to that scheme:

Tiotal = delaymw—way + Tiransm—5Mbits

The transmission time (Corresponding to a bandwidth of 128-kbps) is:

= Lgpo— _ Abit —6
Transm—1pit = ggSec = T28x 1030 — 7.81 x 10 "sec

sec

— 20 8bits _
Ttmnsm—SMbits =5Xx2 Byte' TByte Ttmnsm—lbit -

40 x 220t - 7.81 x 10705 = 327.575sec

delay R

TT,,i
— min _ 366.66
one—way=——" =232 =183.33sec

11

Tiota = 183.33 + 327.575 = 510.909sec

Exercise 17

Calculate the latency (from first bit sent to last bit received) for:

e (a) 1-Gbps Ethernet with a single store-and-forward switch in the path and a packet
size of 5000 bits. Assume that each link introduces a propagation delay of 10 s and
that the switch begins retransmitting immediately after it has finished receiving the
packet.

Nbits— packet = 5000 bits

Delayone—way = Ty = 10 % 10~ %sec

BW = 1 Gbps por tanto, el tiempo de transmision de 1 bit es:

sec _ 1 sec __ 1079&
bit

T = Llosec 1 -sec
transm BW bit 1109 bit

Tiotat = Tp + Teransm - 5000 + T + Tpransm - 5000 = 2- 5000 x 1077 +2- T, =
10-103x 1072 +2-10 x 107 = 3-10 x 107° = 30pusec

12

Fig. 5. Transfer of one packet from Host A to host B via a store-and-forward switch

e (b) Same as (a) but with three switches.
Insert two additional swtiches, since the time cost of each packet transfer is 15usec,
in this case, with three switches between A and B, we will have four transfers, a
total of 4 x 15usec = 60usec.

Exercise 27

For the following, as in the previous exercise (No. 26), assume that no data compression
is done. Calculate the bandwidth necessary for transmitting in real time:

e (a) High-definition video at a resolution of 1920x1080, 24 bits/pixel, 30 frames/sec-
ond
The video is represented a series of ordered frames that are drawn on the screen
at a rate of 30 frames/second so that a person may perceive the movement of the
scenes. Each frame contains 1920 bits on the horizontal axis and 1080 bits on the
vertical axis, thus, the total number of bits contained in a single frame will be:

13

1920 x 1080-2*¢L — 2073600 2!

frame frame

Each of those pixels, according to the problem statement, is represented by 24 bits,
i.e., 3 bytes, each of them represents a color level in the RGB color representation
system for displays. The total frame size, in bits, is:

F.jo = 2073600221 . 04 bits 4976640021t

frame pixel frame

the bandwidth is 302, therefore the bandwidth expressed in bits /sec will be:

sec ’

30L147 . 497664002 = 1.493Gbps

sec frame
(b) POTS (plain old telephone service) voice audio of 8-bit samples at 8 KHz
The telephone user voice is digitzed at standardized rate of 8KHz, each resulting
voice sample, in this case is represented by using 8 bits. In the previous case, colors
were represented by using 24 bits, a much higher resolution, it looks as though our

eye sight can resolve much more detail than the ears can with sound. Perform the
calculations as in (a).

(c) GSM mobile voice audio of 260-bit samples at 50 Hz

This case corresponds to the bandwidth consumed by a GSM cellular phone: higher
resolution in each voice sample but at a rather low frequency. In chapter 2 we will
introduce some basic theorems that will shed some light on the topics related to
digitization quality and channel utilization. Proceed in a manner similar to (a).

(d) HDCD high-definition audio of 24-bit samples at 88.2 KHz

Same as (a).

14

v.4.0.0 - 23/March/2016

Practical Exercises in Computer Networks and Distributed Systems

Complementary Notes to Network Performance

© 2015-16, José Maria Foces Moran

Ex. 4.b, solution 2

The adjoining figure aims to justify an alternative solution to exercise 4 that is more intuitive; in this case, to
compute the total time it takes to transfer the 1.5MB we focus on the transmitting host A timeline. As before,
we first obtain the formula that represents the total transfer time according to the diagram and, then calculate

each of its components.
A B
t=0 et
Ttotal =
Handshake + Transmit Packet 1 ---oooe b
transmit bit 1
(TTransmPack + Rtt) ¢ (NpaCk -1) +
T + transmit bit 2)
propagate bit 1
TransmPack transmit bit 3
Tprop
Packet 1 transmitted transmit it N
www
TP
Wait one Rtt Packet 1 fully transferred
(Rtt = Tp + Tp)
TP
Transmit Packet 2
transmit bit 1

transmit bit 2

transmit bit 3

transmit bit N
Packet 2 transmitted

Tp

Packet 2 fully transferred

P

Transmit Packet Npack
transmit bit 1

transmit bit 2

transmit bit 3

transmit bit N

Packet Npack transmitted

Tp

- Packet Npack fully transferred

(V.0.3, 27/3/2017)

Courses on Computer Networks and Distributed Systems

Complementary note on The Delay x Bandwidth product

© 2015, 2017 José Maria Foces Moran

Think of your uploading a large file to your Dropbox. Your host computer -the sender- might indicate its intention of
starting the upload operation by sending a string of bits which meaning would be “UPLOAD REQUEST”. The time it
takes for the “UPLOAD REQUEST” to arrive at the receiver is roughly Rtt/2. The receiver, shortly after receiving the
“UPLOAD REQUEST”, would respond by sending an “UPLOAD ACCEPTED” message, which would also take Rtt/2
seconds to arrive at the sender. The sender had to wait a full Rtt to become convinced that the “UPLOAD REQUEST”
it sent, was accepted. It sent the few bits that comprise the “UPLOAD REQUEST” message, and then it waited for the
response for Rtt seconds.

If we measured the throughput in bits per second (bps), we would observe the result is shockingly low, and the
reason is that the network, in fact could absorb many, many more bps than we offered —the bits sent in the text
“UPLOAD REQUEST". You would argue that, when sending such short messages, the throughput attainable can not
be high since their short nature precludes a high network utilization up front.

Diagram in Fig. 1 summarizes this idea, that it takes a full Rtt to receive the response after the request is sent and,
furthermore, that after sending the REQUEST, the sender is sending no more bits until after it receives the REPLY. We
aim to establish that continuous sending is a caveat for attaining any high level of throughput —at least, continual
transmission would be required.

A network link B
TO
REQUEST
Rtt
REPLY
T
\ v

Fig. 1. Stop-and-wait: Sender sends a few bits (the REQUEST) and waits for the REPLY before proceeding with
sending the file blocks

A positive response from host B (The receiver) means that host A is allowed to upload the file, thus, it would start
sending the first file blocks shortly after the reply is received. However, why not start sending the first blocks right

(V.0.3, 27/3/2017)

after the request? If the reply from B were negative, it would discard them altogether; however, in case the reply
were positive, host B would have received the first blocks amidst a time that would otherwise have been wasted. It
looks as though a performance increase could be accomplished if sender and receiver were able to function with
continuous —or at least, continual- sending instead of sending and stopping for the reply. The transmission diagram
in fig. 2 will help us summarize the idea of continual transmission vs. stop-and-wait. Continuous transmission allows
the sender to transmit at B bps without ever stopping transmission, whereas continual transmission also allows B
bps transmission bandwidth but it prescribes that transmission can be stopped for short periods of time, according
to the needs of the protocol governing the transfer between the two hosts. The latter strategy results more realistic

than the former.

network link

>
-]

T0
EQUEST

y

Rt

i

T

v

Fig. 2. Sender A sends at B bps for the whole duration of the Rtt, then it achieves the maximum performance
attainable (Continuous transmission)

<
<%

In interpreting fig. 2, the essential point consists of assuming that Rtt is fixed, it can obviously change with time,
however, for the purposes of grasping the utility of the Bandwidth x Delay product, we assume the Rtt is fixed for the
time length of our experiments, then, the faster the transmitter, the better: the tighter the lines in fig. 2, the better,
because we are transmitting more bits per unit time. The Rtt is fixed; then, we should transmit as fast as we can and
without any pauses whatsoever. This continual transmission requires our smart designing the protocol between A
and B, a protocol that attains that A will not be obligated to ever stop transmitting. That’s the challenge. Could we
somehow quantify how smart should our protocol design be? In other words, when designing the peer-to-peer
interface operating between sender and receiver, what quantitative measure could become our benchmark?

Assume Bandwidth is B bps, then, while waiting for the REPLY, the sender keeps sending at B bits-per-second (bps)
for Rtt seconds. Finally, when the REPLY arrives and we ask how many bits got sent meanwhile, the answer comes as

the following expression, known as the B x Rtt product:

B x Rtt = B bits/see x Rtt see = B x Rtt bits

Under normal circumstances, conventional network designs will be such that Rtt = 2 x Done-way-delay, in Other words,
the round trip time will be equal to the sum of the delay in the forward direction and the delay in the backward

direction. It's customary to refer to the bandwidth x delay product simply as 2BD:

(V.0.3, 27/3/2017)

BandWidth X Delay - BandWidth : 2 X Done-way-delay - ZBD

Do we wish to have networks with large Rtts? Since having a large Rtt means we keep transmitting for longer times,
that could give us the wrong impression that large Rtts are something we must seek. No, a large Rtt means some
applications will not function properly, for example, digital telephony which prescribes a max Rtt of 200ms, beyond
which, the conversation parties will begin to lose the perception of conversation and, somehow they will be forced to
enter a conversation mode that might resemble that of a pair of walkie-talkies. In summary, large delays are to be
avoided altogether, however, if a network presents a high Rtt, we seek to take advantage of it by having our protocol
keep sending while it's waiting for any response. In the preceding diagram, we are taking advantage of the Rtt by
designing a peer-to-peer interface (A protocol) that properly handles the aforementioned, continual transmission.

In designing a protocol that regulates data transfer between a sender and a receiver, the 2BD product establishes a
maximum to the amount of data the sender can inject within a single Rtt. 2BD becomes our benchmark when
establishing whether our protocol is performing well. The opportunity comes from large 2BD products, however large
is B or D: if 2BD is large, then, a well-designed protocol can take advantage of it. Somehow, fig.1 and fig. 2 are
extreme cases; in fig. 1 the sender instantaneously transmits a packet and waits a full Rtt for the indication from the
receiver that it successfully received it, then, it continues to transmit the next packet and waits Rtt seconds again for
the response. A protocol like this one is known as stop-and-wait. Right on the other side of the spectrum is the
protocol in fig. 2, which keeps transmitting while waiting for the response, and never stops transmitting. This protocol
at all times has 2BD bits in flight, which would maximize its throughput. It's difficult to design such a protocol and,
since there exist other factors that affect the interaction between sender and receiver and which would cause the
throughput to decrease, such as: bit-errors, packet-errors, packet-delay, packet loss, etc.

In summary, networks that have a large 2BD present a challenge to the designers: to take advantage of it by
implementing a protocol that transmits continuously if possible, otherwise it transmits continually with as few as
possible pauses between periods when sending and periods when not sending and guaranteeing those pauses to be
as short as possible.

(V.0.3, 27/3/2017)

Questions and exercises.

1. Design an experiment for estimating the 2BD product of two Internet hosts which interconnection path
contains 5 IP routers:
a. All routers transmit at the same speed of B bps
b. There’s one router whose IP interface uses a speed of B/10 bps
2. The end-to-end bandwidth undergone by an Internet host when transmitting to another host is about
0,65Mbps, if the Rtt is 1ps, explain whether or not it would be convenient to write a fully pipelined transfer
protocol or remain with the stop-and-wait version.

Translation of paragraph in P&D pg. 49

The delay x bandwidth product is important to know when construct-
ing high-performance networks because it corresponds to how many bits
the sender must transmit before the first bit arrives at the receiver. If the
sender is expecting the receiver to somehow signal that bits are starting
to arrive, and it takes another channel latency for this signal to propagate
back to the sender, then the sender can send up one RTT x bandwidth
worth of data before hearing from the receiver that all is well. The bits in
the pipe are said to be “in flight,” which means that if the receiver tells the
sender to stop transmitting it might receive up to one RTT x bandwidth’s
worth of data before the sender manages to respond. In our example
above, that amount corresponds to 5.5 x 10° bits (671 KB) of data. On
the other hand, if the sender does not fill the pipe—send a whole RTT x
bandwidth product’s worth of data before it stops to wait for a signal—the
sender will not fully utilize the network.

Si el transmisor espera a que el receptor le indique que los bits transmitidos comienzan a llegar vy,
esta indicacién consume otra latencia de canal (El tiempo de retorno de B-> A) en propagarse hasta
el receptor, entonces, el transmisor puede enviar un maximo de B x Rtt antes de apercibirse de que
todo va bien (Que los bits enviados han comenzado a llegar al receptor). Los bits que se encuentran
en “el tubo” decimos que estan “en vuelo”, lo que significa que, si el receptor le indica al
transmisor que deje de transmitir, podria recibir de éste hasta B x Rtt bits antes de que el
transmisor responda consecuentemente...

