Universidad de León
Ingeniería Informática
Course on Computer Networks

B1 class for solving exercises on the board

Exercises similar to those included in this document can be found in paloalto.unileon.es/cn under heading titled "Weekly Homework while on lockdown in year 2020 (For reference only))"

Exercise 1. Consider the generator polynomial C(x) given by the bit-vector

 denoted in decreasing order, from left-to-right: $(1,1,0,1,1)$. Check the resulting CRC circuit by feeding the following data bit-vector, again in decreasing order, from left-to-right: $(1,1,0,0,1,0)$.Generator polynomial: $C(x)=1 \cdot x^{0}+1 \cdot x^{1}+0 \cdot x^{2}+1 \cdot x^{3}+1 \cdot x^{4}$

$\mathrm{M}(\mathrm{x})$	x^{0}	x^{1}	x^{2}	x^{3}
1	0	0	0	0
1	1	0	0	0
0	1	1	0	0
0	0	1	1	0
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1
0	1	1	0	1
0	1	0	1	1
-	1	0	0	0

Exercise 2. Continuing from the preceding exercise, assume that the data bitvector is sent to the receiver along with the calculated CRC (Data + Redundancy). The receiver must check the CRC for errors. The CRC-checking procedure applied by the receiver consists of:
a. Receive $M(x)$, in our case the data bit vector which size is 6 bits. Store $\mathrm{M}(\mathrm{x})$.

We arrange the bits from $\mathrm{M}(\mathrm{x})$ in a column each of which bits will be feed in to the circuit as it evolves from each row to the next one.
b. Receive $C(x)$, the CRC computed by the sender and store it.

As we did in the preceding question, $C(x)$ is represented by having a xor gate's output be (Coefficient 1 of term) connected to the respective term's one-bit register or having the term's register directly connected to its preceding one-bit register.
c. Calculate the CRC by applying the procedure explained in the WebConference-lecture of $26^{\text {th }}$-March, taking into account, though, that instead of padding $\mathrm{M}(\mathrm{x})$ (The data polynomial) with as many zeroes as the order of $C(x)$, you will have to pad the $M(x)$ column with the bits from the received CRC. Pay attention not to invert the order of the CRC bits as you use each of them to pad $\mathrm{M}(\mathrm{x})$. If no error took place, then the new CRC that you are computing should yield all zeroes, i.e., your CRC should be equal to $(0,0,0,0)$ in this case. ${ }^{1}$

Search the documents in paloalto.unileon.es/cn for an exercise similar to this.

Generator polynomial: $C(x)=1 \cdot x^{0}+1 \cdot x^{1}+0 \cdot x^{2}+1 \cdot x^{3}+1 \cdot x^{4}$

$\mathrm{M}(\mathrm{x})$	x^{0}	x^{1}	x^{2}	x^{3}
1	0	0	0	0
1	1	0	0	0
0	1	1	0	0
0	0	1	1	0

[^0]
V 1.0 6th$^{\text {h }}$-May-2022

All rights reserved © 2015-2022 by José María Foces Morán and José María Foces Vivancos

1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1
0	1	1	0	1
1	1	0	1	1
-	0	0	0	0

In this case, the $C R C=(0,0,0,0)$ which means that no error was detected.

V 1.0 6th-May-2022

All rights reserved © 2015-2022 by José María Foces Morán and José María Foces Vivancos

Exercise 3. One of the stations that comprise an HDLC point-to-point link

 wishes to transmit the bit-string 101110110111110101010 to the station on the other end. Explain what the transmitter sends on the line and what the receiver's behavior is.Let's assume that the transmitter has already sent a start of frame flag (01111110) and that a frame transmission is in progress. The sending upper-layer protocol writes the bit string 101110110111110101010 through HDLC service interface, then, since the written payload contains a sub string comprised of five bits 1 , the HDLC transmitter circuit stuffs a bit 0 after the last bit 1 in the sub string: 1011101101111100101010. The receiver suppresses the stuffed 0 and proceeds with the reception of the ensuing bits.

Exercise 4. As for the Exponential Backoff algorithm which we introduced in the lecture:
a. What is Ethernet's Channel Capture effect?

The Channel capture effect represents the fact that when a number of hosts are involved in a collision, the host that has undergone the least number of collisions is the one which most likely will win the backoff.
b. An Ethernet interface E_{1} has undergone 1 collisions in its attempt to transmit a frame A; at the same time, an Ethernet interface E_{2} has undergone 3 collisions in its attempts to transmit frame B. After the last collision, both hosts execute Exponential Backoff, whereby we ask you to compute the probability that E_{1} wins the backoff.

```
E 1 collision; 21 = 2 ---> {0,1}
    E2 }3\mathrm{ collisions; 23 = 8 ---> {0,1,2,3,4,5,6,7}
```



```
- E E only wins the backoff when it obtains a 0 and E E obtains 1
prob(E2 wins) = 1/16 = 0,062500
- prob(E}\mp@subsup{E}{1}{}\mathrm{ and }\mp@subsup{E}{2}{}\mathrm{ obtain the same value) = prob(ties)
    prob( }\mp@subsup{E}{1}{}\mathrm{ gets 0 and E E gets 0| E E gets 1 and E E gets 1)=
    (1+1)/16=0,125
- prob(E}\mp@subsup{E}{1}{}\mathrm{ wins })=1-(\operatorname{prob}(\mp@subsup{E}{2}{}\mathrm{ wins })+\operatorname{prob}(ties))=1-0,0625-0,12
    prob(E}(\mp@subsup{E}{1}{}\mathrm{ wins) = 0,8125
```

 Notice, this is a clear example of the channe/ capture effect.
 c. Now, compute the probability that another collision takes place.

A new collision will happen if both senders get the same value (ties):
$\operatorname{prob}\left(E_{1}\right.$ and E_{2} obtain the same value) $=\operatorname{prob}($ ties $)$
$\operatorname{prob}\left(E_{1}\right.$ gets 0 and E_{2} gets $0 \mid E_{1}$ gets 1 and E_{2} gets 1$)=$
$(1+1) / 16=0,125$
d. Last, compute the probability that the backoff time generated by E_{2} be greater than or equal to $102,4 \mu \mathrm{~s}$.

Assume generated random number $=r$;
Backoff time $=51,2 \mu s \times r>=102,4 \mu s ; r>=102,4 \mu s / 51,2 \mu s=2$

$$
P_{r>=2}=p\{2,3,4,5,6,7\} / p\{0,1,2,3,4,5,6,7\}=6 / 16=0,375
$$

Exercise 5. Consider the extended LAN in fig. 1. Solve the following exercises:
a. Develop the evolution of the forwarding tables of all the switches as the following transmissions take place:

1. Ha sends a frame to Hg

B0 learns Ha. All switches flood this frame since they haven't learned Hg, yet; then all switches learn Ha
2. Ha sends a new frame to Hg

B0 learns Ha. All switches flood this frame since they haven't learned Hg, yet; then all switches learn Ha
3. H_{c} sends a frame to H_{a}

B2 learns Hc

Since all switches already learned Ha, the frame travels from Hc to B2, then to B1, then to B0 and finally to Ha, that is, no flooding
4. H_{e} sends a frame to the broadcast address

B3 learns He; since the dest MAC is ethernet broadcast, all switches fllood the frame, consequently, all switches learn He
5. H_{b} sends a frame to the broadcast address

B0 learns Hb; since the dest MAC is ethernet broadcast, all switches fllood the frame, consequently, all switches learn Hb
6. H_{d} sends a frame to H_{e}

B2 learns Hd; since all switches learned He in step 4, frame travels through this path: Hd -> B2 -> B1 ->B3 -> He
b. Host H_{b} sends a frame which SRC MAC is that of H_{g}. Explain how H_{b} can do this assuming that it is running a Linux stack and have the forwarding tables updated after the said frame sending by H_{b}.

[^1]
V 1.0 6th-May-2022

All rights reserved © 2015-2022 by José María Foces Morán and José María Foces Vivancos

- Bridge B0 learns Ha.
- B0 forwards frame onto port 2 according to the learning done on the preceding step

Figure 1. Extended LAN

All rights reserved © 2015-2022 by José María Foces Morán and José María Foces Vivancos

[^0]: ${ }^{1}$ Since the order of $\mathrm{M}(\mathrm{x})=4$, the order of the resulting CRC polynomial (The remainder of the integer division) must be $=4-1=3$; consequently, the resulting CRC should be equal to $(0,0,0,0)$.

[^1]: - Use a PF_PACKET/SOCK_RAW socket
 - Bridge B0 learns Hg at port 2. Switches standing on the path to destination learn Hg
 c. Now, H_{a} sends a frame to H_{g}. Update the forwarding tables and explain which hosts receive that frame.

