
v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

1	

Universidad de León
Bachelor Degree on Computer Science and Engineering
Course on Computer Networks

CN Practice on Socket Programming and Wake-On-Lan

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos

--- Study Guide ---

The following study guide outline is not to be included in your LabBook
writeup:

1. Have the textbook by Peterson & Davie at hand. Most of the material
that we have taught so far belongs in book chapters 1 and 2. Find the 6th
edition to the book, here:

https://github.com/SystemsApproach/book/releases/download/v6.1/book.pdf

2. A valuable resource as you undertake the practice exercises is the

practices that we did the past academic year. Source code and guiding
explanations can be found in the practice scripts.

http://paloalto.unileon.es/cn/

3. In the present WH, we build a program that accesses the Ethernet

directly that has been stored for you in your remote account. Programs
that access the network or datalink layers directly require a Linux
capability known as Raw Socket Capability. This capability is usually
limited to the system administrator (The root user), but you need it so
that the programs that you make can successfully open the raw socket
successfully. When I enable the remote access to Lab B6, I start a service
for having each of your programs conveniently granted the
CAP_NET_RAW capability. You simply have to redirect the file’s full
path name to a Linux fifo and soon the client process listening on the
fifo’s read side will grant your program the needed capability. Consult
the previous practice script for more detail.

4. Include the solutions to the practice exercises in your LabBook
writeup.

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

2	

Figure1. Lan30 offers 4 hosts for practicing programming with Linux

Packet Sockets

Refresher about Internet Architecture and Interfaces.

In chapter 1, we introduced the Internet Architecture (IA). The essential
characteristic of IA is that it is comprised of a hierarchy of four protocol layers
alongside interfaces for programmatic access to layers 1, 2 and 3. Each interface
permits a programmer to use the services provided by the accessed layer’s
protocol. You, the programmer simply invoke some send()1 or receive()
function call from the sockets library. The rest of the communication processes
are completely transparent to you, the programmer; those processes are the
exclusive responsibility of the socket interface alongside with the underlying
protocol stack.

Each of the lower three layers in the IA offers a socket interface, consequently
you can make network programs that choose a socket interface to access one of
the following layers:

• Interface to Layer 3. These sockets allow programming against the UDP and

TCP protocols. If time permits, we will introduce these sockets in the last
WH while on the distance teaching mode. This interface is commonly
named after its designers, the University of California at Berkeley (Berkeley
Sockets).

	
1	send() and receive() in this context must be understood as representing groups of library
functions for sending and for receiving and not concrete socket library functions.	

IP Router
Lab B6

Network 1

Linux ssh
Port fwd

Internet

Cisco LAN Switch-Router
STP + VLAN + DHCP

Net number:
192.168.30.0/24

Home PC

192.168.30.103/24

192.168.30.100-199

Ssh
tunnel

Net number:
192.168.1.0/24

Computer Networks 2021
Remote Access to Lab B6

$ ssh -p 50500 student@paloalto.unileon.es
Lan30

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

3	

• Interface to Layer 2. Basically, these sockets allow a programmer to
program against the IP protocol (At the Network layer). The technical name
to these sockets is Raw Sockets and are used by notable utilities such as ping
and traceroute, with which we have familiarity from Practice 1. The protocol
family of this type of raw sockets is PF_INET (Protocol Family_Internet).

• Interface to Layer 1. At the layer 1 we find a protocol essential to this

course: the Ethernet protocol. The type of socket to use is Raw Sockets again,
however, in this case, the protocol family is PF_PACKET (Protocol
Family_Packet; this protocol family is exclusive of Linux and the name,
“Packet” might be considered somewhat misleading). This is the type of
socket that is the focus of this practice. You find the location of PF_PACKET
Raw Socket interface in the Internet Architecture in Fig. 1.

Figure 1. Sender application on host 1 uses the PF_PACKET socket interface to

the Ethernet datalink protocol to send information to its peer application on
host 2.

Programming against the PF_PACKET socket interface

In this practice we develop a program that sends a frame directly over the
Ethernet. The program transmits the frame by calling the send() function of a
PF_PACKET/Datagram socket. The payload encapsulated into the frame
results from repeatedly copying a string of bytes provided by the user on the
command line. The transmission is checked by having tcpdump receive the
frame, either in the same host that transmits the frame or at any other host
within the same LAN.

The source code includes comments to the most important data structures and
program operations. If necessary, scan the code for a more detailed study
thereof. Below, an overall explanation of the program is developed by focusing
on the few functions that comprise it and on the socket calls and sockets data
structures involved.

Subnetwork

4

3

2

1

Network

Transport

Application

Host 1

Datalink
Physical

Network

Transport

Application

Datalink
Physical

Host 2
LAN

switch

PF_PACKET
Interface

Sender App

PF_PACKET
Interface

Receiver App

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

4	

The purpose of the proposed exercises is twofold. On the one hand, they are
aimed at improving the basis of your knowledge about network architecture
and sockets; on the other hand, their aim is to improve your hands on ability in
C programming and in Linux networking.

• The program starts with interpreting the command line arguments in
function main(): the network interface to use for transmission, the base
character string that is to be repeatedly copied into the payload and the
optional total payload size, which default value is 128B.

• Function start() contains the core flow of operations in the program
which follows this outline

i) Print an informational program legend
ii) Create a socket address structure for the raw socket that is to be

created afterwards.
iii) Create a socket of the right type for sending directly onto an ethernet

interface
iv) Create an array for storing the bytes that make up the payload that is

to be encapsulated into the frame to transmit
v) Call the socket’s function sendto() which will request the sockets

layer to send the frame just built

• Sending and receiving on raw sockets entails a socket structure to store
key fields from the ethernet header and other relevant information such
as the network interface involved in either operation. The type of sockets
used in this practice (PF_PACKET family) employ a socket address
supported by the following derived type:

struct sockaddr_ll

The postfix “ll” in the struct type name means link level. This struct is
declared in the following header file:

#include <linux/if_packet.h>

The creation of the struct sockaddr_ll necessary for sending and
receiving is accomplished in function fillSocketAdress(). The function
fills the necessary fields as in the following outline:

o The address family (PF_PACKET)
o The interface index (ifconfig returns an interface name which

must be translated into an index valid for the socket address)
o Ethernet’s multiplexing key (Ethertype) to be used by this socket

(Note that the selected Ethertype must be stored in network byte
order). We use an Ethertype value that is not reserved (0x07ff).

o The remaining fields are related with ARP. We won’t explain
them at this time. You can see their defaults in the source code.

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

5	

This function returns the struct sockaddr_ll filled with the values
explained above. An essential value remains to be filled at this time yet:
the Destination MAC address which is set by function
setDestinationMAC() to the broadcast address.

• The PF_PACKET socket (Of type SOCK_DGRAM) is created in line 105:
o The socket family argument is constant PF_PACKET
o The socket communication style if SOCK_DGRAM, this means

that the programmer only provides the payload to be sent. The
header is built by the sockets library.

o Last argument is the Ethertype field value (The same that we
crated above for the socket address)

• The payload to be included in the frame to be sent over Ethernet is

created in function buildPayload(). This function appends a number of
copies of a string provided by the user on the command line. The total
number of bytes to be included in the payload is given in the third
command line argument and has a default value of 128 Bytes and a
maximum given by the default Ethernet MTU of 1500 Bytes.

• Function setDestinationMAC() sets the header’s Destination MAC
address to the broadcast address. This program, per se, sends only to the
Broadcast address.

Sundry technical information

 MAC addresses of relevant Network 30 hosts’s interfaces

http://paloalto.unileon.es/cn/Q/mac-ip.txt

 Source code

http://paloalto.unileon.es/cn/Q/dgramPFPACKETSend.c

Exercises for practice

1. Checking the base program:

a. The source code is contained in file dgramPFPACKETSend.c which is

stored in your account. Compile the program:

$ gcc -o dgramPFPACKETSend dgramPFPACKETSend.c

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

6	

b. Check that the program runs; provide no command line arguments at
this time. Observe the information provided by the program about
the command line syntax expected.

c. Send the program to the administrator’s FIFO to have its
CAP_NET_RAW capability set so that the program later runs ok
without complaining about your lacking the necessary privileges.

d. Now, open a new session in paloalto.unileon.es with ssh -p 50500.

Use that second session for connecting with another host in Network
30. Power it up if necessary by sending it the magic packet (Lookup
the host adapter’s MAC in the table above). After waiting a couple
minutes, issue an ssh to the chosen host and log on with user
administrator and password ‘19xxdpq16’. When you are in session,
type an appropriate tcpdump command line that will receive the
frame sent by program dgramPFPACKETSend. You may consult the
past practice for an example of tcpdump command line arguments
appropriate for this exercise, one similar to this one:

$ tcpdump -i eno1 -e -XX -vvv ether proto 0x07ff

Note that you will have to execute tcpdump with sudo or by first
switching to root user with the su command.

e. While tcpdump is waiting to receive the expected frames, start the

dgramPFPACKETSend program and pass it the necessary command
line arguments:

• interface name
• A base string like ‘Andra Tutto Bene’
• The total payload size to send

Notice: The following exercises entail that you modify the base program.
You can modify the source code file dgramPFPACKETSend.c at the
trampoline host in Network 2 by using the vi editor (Or vim)or maybe the
nano editor; alternately, you can do the modifications locally in your home
computer with your preferred editor and have the source code uploaded later
to your account in paloalto at every increment and then have it recompiled
(Every time you modify the source code, either remotely or locally, you’ll
have to recompile it).

2. Have the program accept the Ethertype from the command line as a 4
hex-digit string. This argument is not optional.

a. Create a few unit tests to check that your program functions as
expected. Monitor your program’s operation with tcpdump at
another host in RemLabB6.

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

7	

3. Have the program accept the Destination MAC address from the

command line in hexadecimal base and separating each byte with a
colon (The same MAC address format used by ifconfig). This
argument is not optional.

a. Create a few unit tests to check that your program functions as
expected. Monitor your program’s operation with tcpdump at
another host in RemLabB6 by previously opening a new ssh
session with it.

Program source code

/*
 * Conceptual Computer Networks textbook
 * CN course 2020
 * Express Practice: Simple Datagram PF_PACKET DGRAM send program
 * dgramRawSend.c
 * All rights reserved:
 * (C) 2020 by José María Foces Morán & José María Foces Vivancos
 */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#include <fcntl.h>
#include <memory.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>

#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <net/ethernet.h>
#include <net/if.h>

#include <signal.h>
#include <errno.h>
#include <sys/time.h>

#define byte u_char
#define TRUE 1
#define ETHERTYPE_EXPERIMENTAL 0x07ff
#define DEFAULT_MTU 1500

void setDestinationMAC(byte *p) {

 /*
 * Fill the byte array pointed to by variable p with the
 * bytes that comprise the broadcast address (All 1's)
 */

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

8	

 p[0] = (byte) 0xff;
 p[1] = (byte) 0xff;
 p[2] = (byte) 0xff;
 p[3] = (byte) 0xff;
 p[4] = (byte) 0xff;
 p[5] = (byte) 0xff;

}

/*
 * Create a "large" payload of size payloadSize by cloning baseDataToClone[] as
 * many times as it fits including the remainder size
 */
char * buildPayload(char *baseDataToClone, unsigned baseDataSize, unsigned
payloadSize) {

 char *p = (char *) '\0';

 if (payloadSize == 0 || baseDataSize == 0) {
 fprintf(stderr, "Error: Requested payload size and base data size must be both
greater than 0.\n");
 return p;
 }

 if (payloadSize > DEFAULT_MTU) {
 fprintf(stderr, "Error: Requested payload size exceeds Ethernet maximum
MTU.\n");
 return p;
 }

 if (payloadSize < baseDataSize) {
 fprintf(stderr, "Error: Payload size cannot fit the base data to be
cloned.\n");
 return p;
 }

 /*
 * Request dynamic memory space for the payload to be built
 * p is a sentinel marking the start of the payload being built
 * We'll return p to our calling function
 */
 p = malloc(payloadSize);

 /*
 * Copy p into q and use the latter for indexing the payload as
 * we fill it in the for loop below
 */
 char *q = p;

 /*
 * Copy baseDataToClone as many times as it fits payloadSize
 * Each copy of baseDataSize bytes is made by calling memcpy()
 */
 for (int i = 0; i < (payloadSize / baseDataSize); i++) {
 memcpy(q, baseDataToClone, baseDataSize);
 //Move q pointer forward baseDataSize bytes
 q += baseDataSize;
 }

 /* If the integer division (payloadSize / baseDataSize) produces a
 * remainder (payloadSize % baseDataSize), copy the number of bytes
 * represented by the remainder from baseDataToClone to q
 */

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

9	

 memcpy(q, baseDataToClone, payloadSize % baseDataSize);

 return p;
}

void printProgramLegend(char *payload) {

 printf("Send a frame with PF_PACKET/SOCK_DGRAM\n");
 printf("\tDMAC = ff:ff:ff:ff:ff:ff\n");
 printf("\tSMAC = Network Interface's MAC\n");
 printf("\tEtherytpe = %hx\n", ETHERTYPE_EXPERIMENTAL);
 //printf("\tPayload=\"%s\"", payload);

 fflush(stdout);

}

/*
 * This function fills the fields of the socket address structure
 * Some of the come from the command line arguments passed by the user
 *
 * u_int16_t is used for representing the ethertype
 * u_int16_t is declared int /usr/include/x86_64-linux-gnu/sys/types.h
 * with #include <sys/types.h>
 *
 * __be16 is defined in /usr/include/linux/types.h and is also used for
 * representing ethernet's ethertype field
 */
struct sockaddr_ll fillSocketAddress(char *ifName, u_int16_t ethertype) {

 /*
 * sockaddr_ll has slightly different used when sending than are used when
 * receiving.
 * When sending, sockaddr_ll stores the Destination MAC and the
 * multiplexing key (Ethertype) and the index of the interface to be used for
 * actually transmitting the frame
 *
 * When receiving, sockaddr_ll stores the Source MAC address, the received
 * Ethertype and the interface index the frame was received onto
 */
 struct sockaddr_ll socketAddress;

 //T
 socketAddress.sll_family = PF_PACKET;

 /* Index of network interface */
 socketAddress.sll_ifindex = if_nametoindex(ifName);
 if (socketAddress.sll_ifindex == 0) {
 perror("Error indexing interface name");
 exit(-2);
 }

 /* Address length*/
 socketAddress.sll_halen = ETH_ALEN;

 //Ethertype translated to Network Byte Order
 socketAddress.sll_protocol = htons(ethertype);

 //arp-related
 socketAddress.sll_hatype = 0;

 //arp-related
 socketAddress.sll_pkttype = 0;

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

10	

 return socketAddress;

}

void start(char *ifName, char *baseDataToClone, int baseDataSize, int payloadSize) {

 /*
 * Print the frame fields when program begins to run
 */
 printProgramLegend(baseDataToClone);

 /*
 * This struct stores basic Raw socket parameters such as:
 * multiplexing key (Ethertype), Destination MAC, etc
 */
 struct sockaddr_ll socketAddress = fillSocketAddress(ifName, (u_short)
ETHERTYPE_EXPERIMENTAL);
 setDestinationMAC(&(socketAddress.sll_addr[0]));

 /*
 * Create a socket with the following three actual parameter values:
 *
 * Arg 1: PF_PACKET is the address family used by Ethernet/Datalink sockets in
Linux
 *
 * Arg 2: SOCK_DGRAM is the type of communication style to be used with this
socket:
 * - SOCK_DGRAM means that the programmer is letting the building of the
 * frame's header to the sockets layer (The service interface itself),
 * i.e., the programmer is not building the header but is only the payload
 * as we did above.
 *
 * - The other option available for this argument is constant SOCK_RAW
 * which means that the programmer is providing a full datalink header
 *
 * Arg 3: Ethernet's multiplexing key (Ethertype); in this case we are using
 * - ETHERTYPE_EXPERIMENTAL (0x07ff) which is not reserved. Since we already
 * loaded value ETHERTYPE_EXPERIMENTAL into the socket address created above,
 * we use it again, for consistency (socketAddress.sll_protocol)
 *
 */
 int sock = socket(PF_PACKET, SOCK_DGRAM, socketAddress.sll_protocol);

 /*
 * Call function to have the payload built from a base array of bytes that is
 * going to be cloned a number of times. baseDataToClone is entered by the user
 * on the command line. payloadSize is the total size of the payload
 */
 byte *p = buildPayload(baseDataToClone, baseDataSize, payloadSize);
 if (p == (byte *) '\0') {
 exit(-1);
 }

 /*
 * Finally, the data is ready to be sent onto socket sock
 * sock: The socket created above
 * p: Pointer to an array of bytes (unsigned char) that contains the
 * data to be sent onto the socket
 * payloadSize:
 * The size of the array pointed to by p in bytes
 * 0: Options for this socket
 * socketAddress:

v1.2	
	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

11	

 * Storage for the socket address which contains fields such as:
 * · Dest MAC address
 * · Ethertype (Ethernet's multiplexing key)
 * · Consult /usr/include/linux
 */
 if (sendto(sock, p, payloadSize, 0, (struct sockaddr *) &socketAddress, sizeof
(socketAddress)) == -1) {
 printf("\nsendto() call failed\n");
 perror("sendto: ");
 exit(-1);
 }
}

int main(int argc, char** argv) {

 /*
 * Command-line processing
 */
 if (argc == 3) {

 //call start with default size of 128B
 start(argv[1], argv[2], strlen(argv[2]), 128);
 printf("Simple frame successfully sent to the broadcast address via %s.\n",
argv[1]);

 } else if (argc == 4) {

 int paySize = atoi(argv[3]);
 if (paySize < 0 || paySize > DEFAULT_MTU) {
 fprintf(stderr, "Invalid value for Payload size to send: %d; should be [1,
1500]\n", paySize);
 exit(-1);
 }
 //call start by passing no default parameter
 start(argv[1], argv[2], strlen(argv[2]), paySize);
 printf("Simple frame successfully sent to the broadcast address via %s.\n",
argv[1]);

 } else {

 fprintf(stderr, "Usage: %s\n", argv[0]);
 fprintf(stderr, "\t<Network Interface>\n");
 fprintf(stderr, "\t<Data to be cloned between quotation marks (\"...\")>\n");
 fprintf(stderr, "\t[Payload size to send (Max. 1500B, Default 128B)]\n");

 exit(-1);
 }

}

