
v	1.4	
	

All rights reserved © 2013-2022 by José María Foces Morán and José María Foces Vivancos
	

1	

Universidad de León
Bachelor Degree on Computer Science and Engineering
Course on Computer Networks

CN Practice on PF_PACKET Socket Programming

All rights reserved © 2013-2023 by José María Foces Morán and José María Foces Vivancos

Study Guide

This study guide outline is not to be included in your LabBook writeup

1. A valuable resource as you undertake the practice exercises is the
Practices and Questionnaires that we did the past academic year:

http://paloalto.unileon.es/cn/

2. Programs that access the network or datalink layers directly require a
Linux capability known as Raw Socket Capability. This capability is
usually limited to the system administrator (The root user), but you need
it so that the programs that you make can successfully open and
read/write onto the raw socket successfully. I have started a service in
paloalto.unileon.es that grants the CAP_NET_RAW capability to your
programs such that they successfully open a raw socket even if the
running user is not the root user. Assuming that your user name is
student0 and that your executable file name is magic, the following
command will achieve granting magic the CAP_NET_RAW capability:

$ echo /home/student0/magic > /home/administrator/fifo.cn

Be attentive to send the full path name of your file to fifo.cn, otherwise,
your program will not be located by the capability-granting process. A
few seconds afterwards, if you check whether magic has the
CAP_NET_RAW capability, you’ll observe that it does have it:

$ setcap -v ‘CAP_NET_RAW=epi’ magic
magic: OK

Sundry technical information

MAC addresses of relevant Lab B6’s host interfaces

http://paloalto.unileon.es/cn/Q/mac-ip.txt

v	1.4	
	

All rights reserved © 2013-2022 by José María Foces Morán and José María Foces Vivancos
	

2	

 Source code

http://paloalto.unileon.es/cn/labs/pf_packet_send.c
http://paloalto.unileon.es/cn/labs/pf_packet_receive.c

Exercises for practice

This practice aims to illustrate sending and receiving with Linux PF_PACKET
sockets. The first program referenced above illustrates sending and the other
illustrates receiving. The following sequence of exercises ultimately builds a
pair of programs one of which sends a frame and the other one receives it.

1. Checking the send program

a. Create session #1 in paloalto.unileon.es, that is a remote session

Log in with the student user and password 19xxdpq16

b. Create a directory for your personal work, for example directory
name might be 123Z; then, change directory to it:

$ mkdir 123Z
$ cd 123Z

c. Download the base program referenced in the source code section

above:

Run wget for the download from the link above

d. Edit the program so that it uses an appropriate multiplexing key
(Etehrtype). You’ll be assigned a unique Ethertype for this practice.

Choose an editor such as vi, nano or gedit in Linux and enter the
ethertype value assigned personally to you by replacing the numeric
constant 0x07ff assigned to constant ETHERTYPE_EXPERIMENTAL.
Search for a constant declaration like this and make the change:

#define ETHERTYPE_EXPERIMENTAL 0x07ff

e. Save and compile the program

$ gcc -o send pf_packet_send.c

v	1.4	
	

All rights reserved © 2013-2022 by José María Foces Morán and José María Foces Vivancos
	

3	

f. Have the CAP_NET_RAW capability set on your program by sending
its full path name to /home/administrator/fifo.cn

$ echo /home/student/123Z/send > /home/administrator/fifo.cn

g. Open an ssh session (Session 2) on the host that is to receive the frame

sent by the sending program. Run tcpdump with options appropriate
for the check we want to do now (Consult previous practices). This
instance of tcpdump will wait until the frame is sent on the next step.

h. Run the program in session 1 and check on the remote computer
(Session 2) that the frame sent is correctly received.

At this point, our program sends a frame to a given destination MAC and
Ethertype and its reception has been checked by using tcpdump. Now, we
move on to sending the frame once again and have it received with the use of a
new program that we must evolve.

2. Checking the receive program

At this point we want to check the pair sending-receiving program. We assume
a local session for the receive program (your lab host, Session 2) and a remote
host session for the receive program (paloalto, Session 1, S1).

a. (On session S2) Download the receive program

b. (S2) Edit the receive program so that it is only delivered the traffic
having an Ethertype equal to your personal Ethertype. As before,
modify accordingly the value of symbolic constant
ETHERTYPE_EXPERIMENTAL.

c. (S2) Upgrade the execution capabilities of your program by send its
name to the cn capability fifo:

$ echo /home/student/receive > /home/administrator/fifo.cn

d. (S2) Execute program receive which will wait for a packet to be

received.

e. (S1) Run the send program

f. (S1) Check that the receive program did receive the data successfully.

v	1.4	
	

All rights reserved © 2013-2022 by José María Foces Morán and José María Foces Vivancos
	

4	

3. The receive program needs several adaptations that we aim to cover on the
following sections:

a. (S1) The receive program needs that you adapt the loop where data is

printed out. For example, if the send program sends text, modify the
receive program print loop to print text.

b. (S1) Have the receive program print out the source MAC contained in

the received frame

c. (S1) Have the receive program print out the length of the received

data

4. Correct the receive program errors. Use tcpdump for checking send and

receive at the sender host and/or at the receiving host.

5. Extend the send program so that it computes the even parity of 1’s to the

received data (Only 1 parity bit for the whole structure). The parity bit will
be encapsulated into one byte which will be sent appended to the data bytes.

6. Extend the receive program so that it computes the even parity of 1’s to the
received data (Only 1 parity bit for the whole structure). The parity bit will
be encapsulated into one byte. Then, the computed parity bit and the
received parity bit will be compared and the program will print out the
result of this comparison.

