http://paloalto.unileon.es/cn-ch1-s2.pdf

Chapter 1: Conceptual Basis

Section 2

Typical Internet Protocol Stacks

Application • 4

Transport • 3

Network • 2

Subnetwork • 1

Recalling concept: Encapsulation

- Protocol M wants to use the service provided by protocol N
 - 1. M builds a PDU of its own and hands it on to N
 - The data handed by M is the payload received by N
 - 2. N builds the header of its own PDU
 - Header of N includes a Multiplexing Key
 - Mux Key = A standard identification of protocol M
 - 3. N appends its own header to the payload
 - A PDU of N is completed
 - 4. Protocol N typically will continue by using the service from another protocol P
- PDU of M has been encapsulated into a PDU of N

Encapsulation and multiplexing in the Internet Architecture

■ Example: A web browser requesting a web page

© 2018 José María Foces Morán & José María Foces Vivancos. All rights reserved.

Encapsulation and multiplexing in the Internet Architecture

Example: A web browser requesting a web page

Encap & Mux at interface

What gets sent at each SIF?

What does the Application protocol send to TCP?

What does TCP send to IP?

Finally, what does IP send to Ethernet?

Concept: Protocol N+1 sending onto Protocol N

Encap & Mux at interface

What gets sent at each SIF?

What does the Application protocol send to TCP?

What does TCP send to IP?

Finally, what does IP send to Ethernet? Http-> TCP?
TCP -> IP?
IP-> Ethernet?

Browser calls TCP SIF, sends http message

© 2018 José María Foces Morán & José María Foces Vivancos. All rights reserved.

Recalling concept: Encapsulation

TCP creates a TCP PDU

TCP sends segment onto IP SIF

IP sends packet onto Ethernet SIF

Ethernet transmits whole frame onto the wire

Frame arrives at destination host

- □ The encapsulation + multiplexing is reversed
- Upper layer protocol receives PDU
 - Deencapsulates Payload
 - Hands Payload to protocol indicated in the Mux Key
- Repeat this process until original http message arrives at the destination application protocol
 - Exercise: Explain with detail by using real protocol numbers and port numbers

Ethernet receives new frame from wire

© 2018 José María Foces Morán & José María Foces Vivancos. All rights reserved.

1. Ethernet deencapsulates Payload

2. hands it to IP since mux key is 0x0800

© 2018 José María Foces Morán & José María Foces Vivancos.
All rights reserved.

- 3. IP receives IP packet
- 4. Deencapsulates its Payload
- 5. Interprets Mux Key (Protocol = $6 \Rightarrow TCP$)

? · L4

6. IP hands the TCP segment to TCP protocol

- 7. TCP deencapsulates Payload
- 8. Interprets mux key
- 9. Hands payload to http

10. http server (Apache) interprets http request and responds

© 2018 José María Foces Morán & José María Foces Vivancos.
All rights reserved.

A story about most of the course

How to make networks bigger (Metcalf's Law)

- Scalable connectivity
- Design and build networks that get larger and at the same time preserve the communication capacity amongst the hosts
- Recall: all network technologies have a threshold size beyond which it does not properly scale

Attaining scalable connectivity

- A network technology is <u>scalable</u> if it can grow to huge sizes still preserving its communication functionality
- We wish that the connectivity offered by a network be scalable, i.e., that it can grow as needed, at least within some affordable limits
- The smallest conceivable network: comprised of only one host
 - The *loopback interface* at the network layer permits communication of two applications as though they were at different hosts

Two directly-connected hosts

- Two hosts are directly connected by means of an Ethernet TP (Twisted Pair) cable, for example
- This simplistic scheme works fine
- Resulting network is scalable because hosts can always communicate
- The TP cable and the Ethernet protocol form a so-called point-to-point link

Many hosts connected to one coax cable

- Assume Ethernet technology
- Coax cable and Ethernet form a Multiple Access link
- □ Half duplex: only one communication at any specific time
- Scales well if number of hosts and utilization are moderate

Many hosts connected to one coax cable

- Scales well if number of hosts and utilization is *moderate* Number of of collisions small
- □ The resulting connection scheme forms a **single network**
- What can we do if number of hosts or utilization are high?
 - Switching

From shared cable to switching

New networking equipment: switch Accepts a number of point-to-point hosts It's a Store-and-forward device Can be interconnected to form bigger networks: (one network) Switched Ethernet Coax cable • Tap

Shared medium Ethernet

From shared cable to switching

Switch permits several simultaneous flows: full-duplex! TP cable Switched Ethernet Coax cable • Tap

Shared medium Ethernet

Scalability of a switched LAN

- A properly designed hierarchical switched LAN can house up to roughly 2500 hosts
- Depending on a host of factors

□ Then how come the Internet, today has about 4000M of

hosts?

Scalability of a switched LAN

The interconnection of three switched LANs results in a single switched LAN, a huge one, but still offering an aceptable communication capacity amongst the hosts?

The scale of Internet, today

- □ The scale of Internet has been achieved thanks to:
 - Interconnecting networks
 - Internetwork
 - Using a single Internetwork Protocol: IP
 - And by using fast IP Routers

IP Router

