
ERROR CONTROL
Based on textbook Conceptual Computer Networks by:

© 2013-2020 by José María Foces Morán and José María Foces Vivancos. All rights reserved
v 2.4 27/March/2020

Error control2

Error Control

¨ Bit errors are introduced into frames
¤ Electromagnetic interference

¤ Noise
¤ Electronics faults

Transmitter

Message to
transmit (M)

Transmit M and RAlgorithm computes
redundancy (R)

Receiver

Algorithm computes
redundancy R' and

checks R==R'
+

NOISE

(C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

3

Error Control

¨ Error detection
¨ Error correction

¨ If recipient detects an error, two options:
1. Notify the sender

n Retransmit the frame

n If the probability of error is limited, the frame will be delivered without errors

2. Receiver reconstructs message by using an error correcting code

4

Error Detection

¨ Common techniques

¤ Parity
¤ Two Dimensional Parity (BISYNC)

¤ Internet Checksum (IP)
n IP header, UDP, TCP

¤ CRC (Cyclic Redundancy Check)
n Used in HDLC, DDCMP, CSMA/CD, Token Ring

5

Error Detection

¨ Basic Idea of Error Detection
¤ To add redundant information (REDUNDANCY) to a frame that can be used to

determine if errors have been introduced

¨ Naïve approach: Transmit two complete copies of the data?
n Identical à No error

n WRONG!
n Unequal à Error
n Extremely inefficient

n n bit message, n bit redundant information

¨ Use strong error detection, instead
n k redundant bits, n bits message, k << n
n Example: Ethernet CRC-32

n frame can carry up to 12,000 bits of data
n requires only 32 bits of redundancy

6

Error Detection

¨ Extra bits are redundant
¤ They add no new information to the message

¤ Computed from the original message by applying an algorithm known
by transmitter and receiver

Transmitter

Message to
transmit (M)

Transmit M and RAlgorithm computes
redundancy (R)

Receiver

Algorithm computes
redundancy R' and

checks R==R'
+

NOISE (C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

7

Horizontal parity

¨ 1 bit of redundancy
¤ Normally used for 7-bit data (ASCII characters, for example)

¤ Add 1-bit parity, transmit the resulting 8 bits
n Odd-parity sets the eighth bit to 1 if needed to give an odd number of 1s in the byte

n 7-bit data: 0101010, Odd parity: 0, Send 01010100
n 7-bit data: 0001010, Odd parity: 1, Send 00010101

n Even parity sets the eighth bit to 1 if needed to yield an even number of 1s in the byte

n 7-bit data: 1111010, even parity: 1, Send 11110101
n 7-bit data: 1111010, Odd parity: 0, Send 11110100

8

Computing the even parity

Example:
¤ M = 7 bits of data
¤ R = 1 bit of redundancy (Even parity)
¤ Computation:

n Parity bit = Data0 XOR Data1 XOR Data2 XOR Data 3 XOR Data4 XOR Data5 XOR Data6

n DATA = 0110110
n PARITY BIT= 0 xor 1 xor 1 xor 0 xor 1 xor 1 xor 0 = 0
n Send 01101100

(C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

9

Two-dimensional parity, an example

¨ Apply parity to each of the 7-bit
bytes contained in the frame

¨ For every 6-BYTE block, compute
its block-parity BYTE by
computing the parity of each
column of bits.
¤ Two-dimensional parity catches all

1-, 2-, and 3-bit errors and most
4-bit errors

¤ It’s capable of correcting 1 error

10

Internet Checksum Algorithm

¨ Not used at the datalink level
¨ Used by IP, UDP and TCP
¨ Transmitter

¤ R = Add up all the words using 1-complement
¤ Transmit the 1-complement of R (checksum)

¨ Receiver
¤ Same calculation on the received data
¤ Compares the result with the received checksum

¨ If data|checksum gets corrupted
¤ Results will not match
¤ Receiver knows that an error occurred

11

Internet Checksum Algorithm

¨ Consider the data being checksummed as a sequence of 16-bit
integers.

¨ Add them together using 16-bit ones complement arithmetic
(explained next slide) and then take the ones complement of
the result.

¨ That 16-bit number is the checksum

12

Cyclic Redundancy Check (CRC)

¨ A few extra bits will maximize protection

¨ Given a (message), a bit string 110001 we can associate a polynomial on a
single variable x for it
- M(x) = 1·x5+1·x4+0·x3+0·x2+0·x1+1·x0

= x5 + x4 + 1
- degree is 5, number of bits is 6
- A k-bit frame has a maximum degree of k-1

¨ Let M(x) be a message polynomial and
¨ Let C(x) be a generator polynomial

13

Cyclic Redundancy Check (CRC)

¨ Assume M(x)/C(x) leaves a remainder of 0

¨ M(x) is sent but, in fact, M’(x) is received

¨ The receiver will compute M’(x)/C(x)
¤ Remainder is not 0: Error has been detected

¨ Sender and receiver must use the same C(x)
¤ Examples: Ethernet (CRC-32)

14

Cyclic Redundancy Check (CRC)

¨ Polynomial Arithmetic Modulo 2

¤ Any polynomial B(x) can be divided by a divisor polynomial C(x) if B(x) is of higher
degree than C(x).

¤ Any polynomial B(x) can be divided once by a divisor polynomial C(x) if B(x) is of the
same degree as C(x).

¤ The remainder obtained when B(x) is divided by C(x) is obtained by subtracting C(x)
from B(x).

¤ To subtract C(x) from B(x), we simply perform the exclusive-OR (XOR) operation on
each pair of matching coefficients.

15

Cyclic Redundancy Check (CRC)

CRC Calculation using Polynomial Long Division

Cyclic Redundancy Check (CRC)

¨ Properties of Generator Polynomial
¤ In general, it is possible to prove that the following types of errors can

be detected by a C(x) with the stated properties
n All single-bit errors, as long as the xk and x0 terms have nonzero

coefficients.

n All double-bit errors, as long as C(x) has a factor with at least three
terms.

n Any odd number of errors, as long as C(x) contains the factor (x+1).

n Any “burst” error (i.e., sequence of consecutive error bits) for which
the length of the burst is less than k bits. (Most burst errors of larger
than k bits can also be detected.)

17

Cyclic Redundancy Check (CRC)

¨ Six generator polynomials that have become international
standards are:
¤ CRC-8 = x8+x2+x+1

¤ CRC-10 = x10+x9+x5+x4+x+1

¤ CRC-12 = x12+x11+x3+x2+x+1

¤ CRC-16 = x16+x15+x2+1

¤ CRC-CCITT = x16+x12+x5+1

¤ CRC-32 =
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

18

Steps to compute the CRC by shift registers 1/4
(Example from pg 101/102 of P&D textbook)

(C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

19

Computing CRC by shift registers 2/4
(Example from pg 101/102 of P&D textbook)

3. XOR gate at the input of each register that does belong in C(x)
Since the term 1 (0 x power) does belong in C(x), we add an XOR gate at the input
of register 0

Since the term x1 (1 x power) does NOT belong in C(x), we connect its input
directly to the output of its former shift register (0)

Since the term x2 (2 x power) does belong in C(x), we add an XOR gate at the
input of register 2

0 1 2

0 1 2

0 1 2

(C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

20

Computing CRC by shift registers 3/4
(Example from pg 101/102 of P&D textbook)

4. Connect the output of the Most Significant Register (2) to all the
XOR gates

5. Add one more shift register which will hold each present value

from the message polynomial M(x). The arrows represent the
information flow of the circuit:!

0 1 2

0 1 2M(x)

(C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

21

Computing CRC by shift registers 4/4
(Example from pg 101/102 of P&D textbook)

22

(C) 2014-2018 José M
aría Foces Morán &

José M
aría Foces Vivancos. A

ll rights

reserved.

