ERROR CONTROL

Error Control

$2 \square$ Bits of information sent in frames may undergo unintended changes as they travel to their destination

- Those changes are known as errors
\square Causes of bit errors
- Electromagnetic interference
- Noise
- Electronics faults
$3 \square$ The M bits of information included in a frame are sent along with R bits computed from the M info bits
- The receiver computes R again (R^{\prime}) using the received M bits
- The receiver checks whether $R==R^{\prime}$
- If true, probably no error happened
- Else, at least one error happened

© 2013-2024 by José Maria Foces Morán and José María Foces Vivancos. Aill rights reserved
- These bits addno new information to the message M
- These bits are computed from the original message by applying an algorithm known by the transmitter and the receiver

© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Error detection and error correction

\square If recipient detects an error, two options:

1. Notify the sender to have the frame resent

- ARQ (Automatic Repeat Request)
- Retransmit the frame

2. Receiver reconstructs message M by using an error correcting algorithm

- FEC: Forward Error Correction
- Invented originally by Richard Hamming
\square Common techniques
- Parity
- Two Dimensional Parity (BISYNC)
- Internet Checksum (IP)
- IP header, UDP, TCP
- CRC (Cyclic Redundancy Check)
- Used in HDLC, DDCMP, CSMA/CD, Token Ring
© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Error Detection

\square Naïve approach: Transmit two complete copies of the data?

- Identical \rightarrow No error
- WRONG!
- Unequal \rightarrow Error
- Extremely inefficient
- n bit message, n bit redundant information!
- Use strong error detection, instead
- Redundancy R of length k bits
- n bits message, $k \ll n$
- Example: Ethernet's CRC-32
- Frame can carry up to 12,000 bits of data
- The CRC algorithm requires only 32 bits of redundancy
© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Error detection with Horizontal Parity

$\square \mathrm{R}$ has a length of 1 bit

- Normally used for 7-bit data (ASCll characters, for example)
- Add 1-bit parity, transmit the resulting 8 bits
- Odd-parity sets the eighth bit to 1 if needed to give an odd number of 1 s in the byte
- 7-bit data: 0101010, Odd parity: 0, Send 01010100
- 7-bit data: 0001010, Odd parity: 1, Send 00010101
- Even parity sets the eighth bit to 1 if needed to yield an even number of 1 s in the byte
- 7-bit data: 1111010, even parity: 1, Send 11110101
- 7-bit data: 1111010, Odd parity: 0, Send 11110100
© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Computing the even parity

Example:

- $M=7$ bits of data
$\square R=1$ bit of redundancy (Even parity)
- Computation:
- Parity bit = Data0 XOR Data1 XOR Data2 XOR Data 3 XOR Data 4 XOR Data5 XOR Data6
$■$ DATA $=0110110$
- PARITY BIT= 0 xor 1 xor 1 xor 0 xor 1 xor 1 xor $0=0$
- Send 01101100
© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Two-dimensional parity, an example

\square Apply parity to each of the 7-bit bytes contained in the frame
\square For every 6-BYTE block, compute its block-parity BYTE by computing the parity of each column of bits.

- Two-dimensional parity catches all 1-, 2-, and 3-bit errors and most 4-bit errors
- It's capable of correcting 1 error

© Larry Peterson and Bruce Davie, Morgan-Kauffman Pub. Co, Textbook "Computer Networks 5ed"

Internet Checksum Algorithm

\square Not used at the datalink level
\square Used by IP, UDP and TCP
\square Transmitter
$\square \mathrm{R}=$ Add up all the words using 1-complement arithmetic

- Transmit the 1-complement of R (checksum)
\square Receiver
- Do the same calculation on the received data
- Compares the result with the received checksum
\square If data|checksum gets corrupted
- Results will not match
- At least one error occurred
© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Internet Checksum Algorithm

\square Consider the data being checksummed as a sequence of 16-bit integers.
\square Add them together using 16-bit ones complement arithmetic (explained next slide) and then take the ones complement of the result.
\square That 16-bit number is the checksum
© Larry Peterson and Bruce Davie,
Morgan-Kauffman Pub. Co, Textbook
"Computer Networks 5ed"

Cyclic Redundancy Check (CRC)

\square For protecting frames transmitted on high speed media

- The CRC used in Ethernet is 32 bits in length
\square Given M, a bit string 110001, for example, we can associate with it a polynomial on a single variable x :
$-M(x)=1 \cdot x^{5}+1 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x^{1}+1 \cdot x^{0}$

$$
=x^{5}+x^{4}+1
$$

- degree is 5 , number of bits is 6
- A k-bit frame has a maximum degree of $k-1$
\square Let $\mathrm{M}(\mathrm{x})$ be the Message polynomial and
- Let $\mathrm{C}(\mathrm{x})$ be a mathematically established Generator polynomial
© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Cyclic Redundancy Check (CRC)
\square Assume $M(x) / C(x)$ leaves a remainder of 0
$\square M(x)$ is sent but, in fact, $M^{\prime}(x)$ is received
\square The receiver will compute $\mathrm{M}^{\prime}(\mathrm{x}) / \mathrm{C}(\mathrm{x})$
\square Remainder is not 0 : Error has been detected
\square Sender and receiver must use the same $\mathrm{C}(\mathrm{x})$

- Examples: Ethernet (CRC-32)
© Larry Peterson and Bruce Davie,
Morgan-Kauffman Pub. Co, Textbook
"Computer Networks 5ed"

Cyclic Redundancy Check (CRC)

\square Polynomial Arithmetic Modulo 2

- Any polynomial $B(x)$ can be divided by a divisor polynomial $C(x)$ if $B(x)$ is of higher degree than $C(x)$.
- Any polynomial $B(x)$ can be divided once by a divisor polynomial $C(x)$ if $B(x)$ is of the same degree as $C(x)$.
- The remainder obtained when $B(x)$ is divided by $C(x)$ is obtained by subtracting $C(x)$ from $B(x)$.
- To subtract $C(x)$ from $B(x)$, we simply perform the exclusive-OR (XOR) operation on each pair of matching coefficients.
© Larry Peterson and Bruce Davie, Morgan-Kauffman Pub. Co, Textbook
"Computer Networks 5ed"

Cyclic Redundancy Check (CRC)

CRC Calculation using Polynomial Long Division
\square Properties of Generator Polynomial

- In general, it is possible to prove that the following types of errors can be detected by a $C(x)$ with the stated properties
- All single-bit errors, as long as the xk and $\mathrm{x0}$ terms have nonzero coefficients.
- All double-bit errors, as long as $C(x)$ has a factor with at least three terms.
- Any odd number of errors, as long as $C(x)$ contains the factor ($x+1$).
- Any "burst" error (i.e., sequence of consecutive error bits) for which the length of the burst is less than k bits. (Most burst errors of larger than k bits can also be detected.)
© Larry Peterson and Bruce Davie, Morgan-Kauffman Pub. Co, Textbook
"Computer Networks 5ed"

Cyclic Redundancy Check (CRC)

\square Six generator polynomials that have become international standards are:

- CRC-8 $=x^{8}+x^{2}+x+1$
- CRC-10 $=x^{10}+x^{9}+x^{5}+x^{4}+x+1$

ㅁ CRC-12 $=x^{12}+x^{11}+x^{3}+x^{2}+x+1$

- CRC-16 $=x^{16}+x^{15}+x^{2}+1$

ㅁ CRC-CCITT $=x^{16}+x^{12}+x^{5}+1$

- CRC-32 = $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$
© Larry Peterson and Bruce Davie,
Morgan-Kauffman Pub. Co, Textbook
"Computer Networks 5ed"

Steps to compute the CRC by shift registers 1/4

(Example from pg 101/102 of P\&D textbook)

Complementary notes to CRC computing by shift registers ©2013, José María Foces Morán

1. Generator polynomial of CRC example in pg. 101 and 102 of P\&D textbook.

$$
\mathrm{C}(x)=1+x^{2}+x^{3}=1 \cdot x^{0}+0 \cdot x^{1}+1 \cdot x^{2}+1 \cdot x^{3}
$$

2. One-bit shift registers

The order of $C(x)$ is $k=3$, the circuit will have k registers, each assigned to powers of $x 0$ through $k-1$, in this case powers are: 0,1 and 2 and the number of shift registers is 3

© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Computing CRC by shift registers 2/4

(Example from pg 101/102 of P\&D textbook)

$$
\mathrm{C}(x)=1+x^{2}+x^{3}=1 \cdot x^{0}+0 \cdot x^{1}+1 \cdot x^{2}+1 \cdot x^{3}
$$

3. XOR gate at the input of each register that does belong in $C(x)$

Since the term 1 (0 x power) does belong in $\mathrm{C}(\mathrm{x})$, we add an XOR gate at the input of register 0

2
Since the term x 1 (1 x power) does NOT belong in $C(\mathrm{x})$, we conneect is $\mathrm{l}^{\circ} \mathrm{in}$ put directly to the output of its former shift register (0)

Since the term $\mathrm{x} 2(2 \mathrm{x}$ power) does belong in $\mathrm{C}(\mathrm{x})$, we add an XOR gate at the input of register 2

© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Computing CRC by shift registers 3/4

(Example from pg 101/102 of P\&D textbook)

$$
\mathrm{C}(x)=1+x^{2}+x^{3}=1 \cdot x^{0}+0 \cdot x^{1}+1 \cdot x^{2}+1 \cdot x^{3}
$$

4. Connect the output of the Most Significant Register (2) to all the XOR gates

5. Add one more shift register which will hold each present value from the message polynomial $M(x)$. The arrows represent the information flow of the circuit:

© 2013-2024 by José María Foces Morán and José María Foces Vivancos. All rights reserved

Computing CRC by shift registers 4/4 (Example from pg 101/102 of P\&D textbook)

$\mathrm{C}(x)=1+x^{2}+x^{3}=1 \cdot x^{0}+0 \cdot x^{1}+1 \cdot x^{2}+1 \cdot x^{3}$
6. The CRC circuit is ready for computing the CRC. This type of circuit computes its next state by using its present state. Initially, the present state of the circuit will be represented by a 0 in each register, except for $M(x)$ which will contain the bits from the message polynomial, starting with its Most Significant Bit make sure you add k 0 's to the least significant bits of $M(x)$, in this case 3 . We will represent this computation in tabular form. We proceed by starting with the first row (initial state) and compute the next x^{0} bit (next row) according to the circuit and do the same for x^{1} and x^{2}. When a new row has been computed, we have a new present state and proceed by computing the next state(next row) using the explained procedure. The algorithm finishes when there remain no more bits in $\mathrm{M}(\mathrm{x})$, at that state, bits $\mathrm{x}^{0}, \mathrm{x}^{1}, \mathrm{x}^{2}$ contain the CRC.

$M(x)$	x^{0}	x^{1}	x^{2}
1	0	0	0
0	1	0	0
0	0	1	0
1	0	0	1
1	0	0	1
0	0	0	1
1	1	0	1
0	0	1	1
0	1	0	0
0	0	0	0
0	0	0	1

