Extracted from textbook *Conceptual Computer Networks* © 2013-2021 by José María Foces Morán & José María Foces Vivancos

A few figures at the end of the presentation are © 2012, Morgan-Kaufmann Pub. Co., Prof. Larry Peterson and Bruce Davie

CH. 3 IP FORWARDING AND ROUTING

Lecture on IP internetworks

Computer Networks Course, Universidad de León, 2015-2021

Chapter Outline: IP protocol

□ IP := Internetwork Protocol

- Packet
- Addressing
- **D** Forwarding
 - Longest Prefix Match Algorithm
- **D** Routing
 - DV Algorithm/RIP protocol
 - Dijkstra Algorithm/OSPF protocol

Where are we, now?

WH5-Practice
 Send a frame from host A to host B

A and B belong to the same network

Same context: one network

- □ WH5-Practice
 - Send a frame from host A to host B
 - A and B belong to the same network

Same context: one network

- □ WH5-Practice
 - Send a frame from host A to host B
 - A and B belong to the same network

One network scales poorly

□ Create many!

• How to have them connected?

Create two networks

Connect them directlyNO: A single network results!

Solution: Create an internetwork

- Communication between networks is accomplished by using an IP Router
 - IP Router: Acts as Gateway between networks

IP Router

Protocol stack of IP Router

Recall host-to-host communication across <u>one</u> network

Concept: Host-to-host communication across <u>two</u> networks

Sending from A to X across an internetwork

13

16

□ Phase 3: Router R₀ transmits frame to Host X

Frame sent:

- **DMAC** = 0×112233445580
- $\square SMAC = 0 xAABBCCDDEE20$
- **\Box** Ethertype = 0x0800
- Payload = IP packet sent by A to R₀ which was deencapsulated by R₀.

Addresses, MAC and IP

□ **IP address** is used for:

Locating a host's network in Internet

- And for locating and identifying the host within its network
- Finally, communication with the host within its network entails:
 The host's NIC MAC address
- Every time a defective NIC has to be replaced, the MAC changes

Review of communication of Host A to Host X across an internetwork

- \square Host A must know the IP address of R₀
 - Known as the Default Router of host A!
- \square However, host A does not know the MAC address of R_0
 - It might even have changed from last communication!

Can Host A find the MAC of R_0 left interface, that is, automatically?

19

Address Resoultion Protocol

ARP, a protocol ancillary to IP for resolving an IP address into its corresponding MAC address within a single network

ARP Request

Host A finds the MAC address of its *default router* R₀ by using ARP

- 1. A sends ARP request for the IP address of R₀
- **2**. R_0 responds with its MAC address

ARP Response

21

□ R0 responds with its MAC address

Now, Phase 1 of communication of A with X can continue

 \square Host A knows R₀ IP address (Default router !)

After ARP Response, Host A knows the MAC of Ro (Left interface)

Done.

- □ Phases 1 and 3 entail ARP request/response, as well !
- □ Host A successfully handed a message to Host X over separate networks

Exercise. Explain arp resolution in Phase 3

- 24
- Explain the ARP process as we did earlier
- Provide detail about the full ARP transaction:
 - ARP Request
 - ARP Response

Internetworking with IP

IP must run at every Internet host which includes hosts themselves and IP routers

Internetworking with IP

- $\Box IP = Internet Protocol$
- □ Key for scalable, heterogeneous internetworks
- □ It runs on all the hosts and routers
 - Single logical internetwork
- □ Established by IETF

Internetworking with IP

27

IP Service Model

- Connectionless and unreliable
- □ Best-effort
 - Routers can drop packets
 - Packet loss
 - **•** Routers can reorder packets
 - Routers can erroneously duplicate packets
 - Routers can delay packets
 - Queuing delays
- □ Global Addressing scheme
 - IP addresses
 - For locating and identifying hosts
 - Decimal Dot Notation (DDN): 193.146.101.46

IPv4 packet format

29

Version

- IPv4
- IPv6 (For future)
- IHL: number of 32-bit words in header
- **TOS:** Type of Service (For QoS)
- **D** Total Length: number of bytes in this packet
- FRAGMENTATION
 - Ident (16)
 - Flags (3)
 - Offset (13)
- TTL: Max. number of hops this datagram is permitted to cross
- Protocol: Multiplexing Key
 - Examples: TCP = 6, UDP = 17, ICMP = 1
- Checksum (16): of header only
- Destination IP Address (32 bits)
- Source IP address (32 bits)

0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +_+++++++++++++++++++++++++++++++++++	2 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 +_+++++++++++++++++++++++++++++++++++	1
Version IHL Type of Service	Total Length	
Identification	Flags Fragment Offset	
Time to Live Protocol	Header Checksum	
Source A	ddress	j
Destination	Address	+
+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+
Рау	rload	

Verbatim copy from © IETF RFC 791

IP addressing principles

- □ IP addresses must be unique across the entire Internet
- □ IPv4
 - 32 bits wide, 2³² possible IP addresses
 - Not all may be used for numbering hosts
 - IP address assignment presents some inefficiencies
- Hierarchical. Every IP address contains two parts:
 - Network number in the Most Siginifcant bits
 - Host number in the the Least Significant Bits
- □ Usually, IP addresses are denoted by using DDN (Decimal Dot Notation):
 - **1**0.3.2.4
 - 128.96.33.81
 - **1**92.12.69.77

The full IP addressing space

IPv4 address	Word-32 in	Natural Binar	y ordering
■ 32 bits	First	000000	
2 ³² max IP		0000010	
addresses available	As an Integer = 4	0000100	As an IP address = 0.0.0.4
Binary			
representation:		111000	
Non-negative		111001 1110010	An word-32 block
integers		1110011	comprised of 3 words
5			_
	Based on textbook Conceptual Computer Networks © 2013-2018 by José María Foces Morán		
	Last	111110 111111	

Evolution of IP addressing

Classful Addressing

- Original technique
 - Divide addressing space into successive halves
- Inefficient
- Obsolete

Classful addressing, inefficient

Class A

- Resulting IP blocks: 128
- Size of each network block: $2^{32-8} = 2^{24} = 16777216$ addresses
- Giant size
 - Very inefficient

Class A

Network	bits			Host	bits
<u>0</u> 000	0000.0000	0000.0000	0000.	.0000	0000

Class B

Network bits Host bits <u>10</u>00 0000.0000 0000.0000 0000.0000 0000

Class C

Network bits Host bits <u>110</u>0 0000.0000 0000.0000 0000.0000 0000

Classful addressing, inefficient

□ Class B

- Resulting IP blocks is: $2^{16-2} = 2^{14} = 16384$
- Size of each network block: $2^{32-16} = 2^{16} = 65536$ addresses

Class A

Network	bits		Host	bits
<u>0</u> 000	0000.0000	0000.0000	0000.0000	0000

Class B

Network bits Host bits <u>10</u>00 0000.0000 0000.0000 0000.0000 0000

Class C

Network bits Host bits <u>110</u>0 0000.0000 0000.0000 0000.0000

Class C: exercise

\Box Class C

		Class A					
•	Number of networks?	Network 0 000	bits 0000.0000	0000.0000	0000	Host .0000	bits 0000
0	Number of addresses in each network	Class B					
		Network <u>10</u> 00	bits 0000.0000	0000.0000	0000	Host .0000	bits 0000
		Class C					
		Network <u>110</u> 0	bits 0000.0000	0000.0000	0000	Host .0000	bits 0000

Classful addressing, summary

Classless Inter Domain Routing = CIDR

□ The solution to the lack of efficiency of Classful Addressing

- Specified in RFC 4632
- **CIDR** is pronounced like *Cider*
- \Box An IP address block can have any 2ⁿ size (n integer)
 - Not only 2²⁴, 2¹⁶ and 2⁸

CIDR is efficient

 Unileon network public IP addressing uses CIDR
 2¹⁰ = 4096 addresses

- With Classful addressing Unileon would have had to purchase a full B-class IP block:
 - **2** 16 = 65536 addresses

An IP block is represented by a Prefix Number

- Permits specifying the desired IP block size from among 2ⁿ
- The Router R which has a direct connection to the considered network sets its size
- □ Example:
 - Network number = 193.146.96.0
 - Desired IP Block size = 4096
 log₂ 4096 = 12; 4096 = 2¹²
 12 Host bits
 32 12 = 20 Network bits
 - CIDR Prefix = 20

Each network receives a CIDR Prefix

Internet

- Permits specifying the desired IP block size from among 2ⁿ
- Router R which has a direct connection to network sets its size

R

Network Prefix:

- □ Example:
 - Network number = 193.146.96.0
 - Desired IP Block size = 4096
 log₂ 4096 = 12; 4096 = 2¹²
 12 Host bits
 32 12 = 20 Network bits
 CIDR Prefix = 20

R forwarding table

Destination Network Prefix	Next hop	Interface
193.146.96.0/20	Direct	en1
192.168.1.0/24	Direct	en0
Default	192.168.1.1	en0

Partitioning the IP space: The concept of IP block

□ IP block

Example of an IP Block housing 4096 addresses

IPv4 address expressed in DDN (Dot Decimal Notation): 190.80.96.0/20

⊨---IPv4 address uses 32 bits----

00001001.01010000.00000000.00000000CIDR prefix is /20:These 32-2020 high bits arebitsused forrepresent therepresenting the IPIP blockblock number (Basesize:address or Network $2^{(32-20)} =$ Number)4096 Ipaddresses

Network numbering = CIDR Network Prefix = IP Block

Each network must be mapped to one IP block

Block of 2⁸ words broken down into 2⁵ blocks of 2³ words each

46

Given an aligned 2ⁿ-sized block, compute first and last 8-bit words

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

An IP block is conceptually the same: an aligned 2ⁿ-sized block of IP addresses (32-bit words)

Computing first and last with single operation

Based on textbook Conceptual Computer Networks © 2013-2018 by José María Foces Morán & José María Foces Vivancos

First word	0100 0000 0100 0001 0100 0010 0100 0011	<pre>1. Block size = 2³ = 8 Integer power of 2 Ok!</pre>
	$0100 \ 0100 \ 0101$	2. First address aligned
Last word	0100 0110	$01000000 \mod 8 = 0$ Ok!

Given a word, compute the first address in a single operation

• Set the lowest 3 bits to 0

48

- Leaving the other 5 bits untouched
- Which bit-wise logical operation? Bit-wise AND

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

```
M B M&B
0 0 0 If M = 0, then result is always 0
0 1 0
1 0 If M = 1, then result is = B
1 1 1
```

M is known as 1-bit MASK

Mask for computing the first word

Based on textbook Conceptual Computer Networks © 2013-2018 by José María Foces Morán & José María Foces Vivancos

First word	0100 0000 0100 0001 0100 0010 0100 0011	<pre>1. Block size = 2³ = 8 Integer power of 2 Ok!</pre>
	0100 0100	2 First addross aligned
	0100 0101	2. First address arryned
	0100 0110	$01000 \underline{000}$ mod $3 = 0$
Last word	0100 0111	OK:

49

Mask for computing the last word

Based on textbook Conceptual Computer Networks © 2013-2018 by José María Foces Morán & José María Foces Vivancos

First	word	0100 0100 0100	0000 0001 0010 0011	1.	Block size = 2 ³ = 8 Integer power of 2 Ok!
		0100 0100 0100	0100 0101	2. First address al 01000000 mod 8 =	First address aligned 01000000 mod 8 = 0
Last w	vord	0100 0100	0110 0111		Ok!

Given word 0100 0101, compute the last address
in a single operation

• Set the lowest 3 bits to 1
MASK low bits = 111
Based on textbook Conceptual Computer Networks © 2013-2021 by José Maria Foces Morán & José Maria Foces Vivancos

• Leaving the other 5 bits untouched
MASK high bits = 00000
Based on textbook Conceptual Computer Networks ©
2013-2018 by José Maria Foces Morán
& José Maria Foces Vivancos

MORD = 0100 0101
Based on textbook Conceptual Computer Networks ©
2013-2018 by José Maria Foces Morán
& José Maria Foces Vivancos

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

50

Same for IP Blocks

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

Given IP address 190.80.96.2 calculate the Network Prefix

```
CIDR prefix is 20, therefore the 20 Most Significant bits represent the IP block number
  • MASK 20 high bits
                         = 1111 1111 1111 1111 1111
  • MASK (30-20) low bits = 0000 0000 0000
  • MASK 32 bits
                         • MASK in DDN
                         = 255
                                    .255
                                              .240
                                                        .0
  Given IP address = 190.080.096.002
                                                       Based on textbook Conceptual Computer Networks ©
                                                       2013-2018 by José María Foces Morán
& MASK
                  = 255, 255, 240, 000
                                                       & José María Foces Vivancos
 First
                  = 190.080.096.000 The network number or Base address
Given IP address 190.80.96.2 calculate the Broadcast Address
```

CIDR prefix is 20, therefore the 20 Most Significant bits represent the IP block number • MASK 20 high bits = 0000 0000 0000 0000 0000• MASK (30-20) low bits = 1111 1111 1111 • MASK 32 bits • MASK in DDN = 000 .000 .000 .255 Given IP address = 190.080.096.002 NOT MASK = 000.000.000.255First = 190.080.096.255 The broadcast address

Does this IP belong to this Prefix?

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

□ This is the core about the IP Forwarding Algorithm

Does this IP belong to this Prefix?

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

□ This is not a match since the IP does not belong to IP block

Does this IP belong to this Prefix?

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

\square If so, this is a <u>match</u> (of length /20)

Given IP address = 190.080.096.002 & MASK = 255.255.240.000 Result = 190.080.096.000

Prefix number = 190.080.096.000

Based on textbook Conceptual Computer Networks © 2013-2018 by José María Foces Morán & José María Foces Vivancos

Since Prefix Number = Result -> IP address does <u>match</u> the Prefix

CONCEPT: An IP address belongs to *multiple* IP blocks

Based on textbook Conceptual Computer Networks © 2013-2021 by José María Foces Morán & José María Foces Vivancos

- If an IP matches various Prefixes, which one is the chosen one?
 - The Longest. The longest will tell us the next hop!!!
 - Longest Prefix Matching is the name of the IP forwarding algorithm

Example: Mask from CIDR prefix

56

Exercise from Ed. 5 of P&D (Solved)

Check other exercises at paloalto.unileon.es/cn

• Exams

• Notes, etc

http://paloalto.unileon.es/cn/notes/CN-NotesOnVLSMandCIDR.pdf

Subnet Masks:

CIDR /23 = 255.255.254.0 CIDR /22 = 255.255.252.0 **56.** Suppose a router has built up the routing table shown in Table 3.19. The router can deliver packets directly over interfaces 0 and 1, or it can forward packets to routers R2, R3, or R4. Assume the router does the longest prefix match. Describe what the router does with a packet addressed to each of the following destinations:

- (a) 128.96.171.92
- (b) 128.96.167.151
- (c) 128.96.163.151
- (d) 128.96.169.192
- (e) 128.96.165.121

Table 3.19 Routing Table for Exercise 56

SubnetNumber	SubnetMask	NextHop
128.96.170.0	255.255.254.0	Interface 0
128.96.168.0	255.255.254.0	Interface 1
128.96.166.0	255.255.254.0	R2
128.96.164.0	255.255.252.0	R3
(default)		R4

© 2012, Morgan-Kaufmann Pub. Co., Prof. Larry Peterson and Bruce Davie,

Exercise about LPM/VLSM/CIDR

Router R1

Network Prefix Number	Next-Hop	Interface
192.168.4.0/24	Direct	en1
192.168.3.0/24	Direct	<mark>en2</mark>
192.168.8.0/24	192.168.4.2	en1
192.168.2.0/24	192.168.4.2	en1
192.168.3.0/24	Direct	en2
192.168.2.0/23	192.168.3.2	en1
192.168.8.0/24	192.168.3.2	en2
192.168.2.0/24	192.168.3.2	en2
192.168.2.0/23	192.168.3.2	en2

LPM for forwarding IP packet: Which of the prefixes matching 192.168.3.222 is the best? Otherwise, which is the Longest Prefix that matches this IP?

IP Fragmentation and Reassembly

- Each network has some MTU (Maximum Transmission Unit)
 Ethernet (1500 bytes), FDDI (4500 bytes)
- □ Strategy
 - Fragmentation occurs in a router when it receives a datagram that it wants to forward over a network which has (MTU < datagram)</p>
 - Reassembly is done at the receiving host
 - All the fragments carry the same identifier in the *Ident* field
 - **•** Fragments are self-contained datagrams
 - IP does not recover from missing fragments

IP Fragmentation and Reassembly

IP datagrams traversing the sequence of physical networks

© 2012, Morgan-Kaufmann Pub. Co., Prof. Larry Peterson and Bruce Davie,

IP Fragmentation and Reassembly

(a)	Start of header	
	Ident=x 0 Offset=0	
	Rest of header	Unfragmented
	1400 data bytes	
(b)	Start of boodor	
	Ident=x 1_Offset=0	
	Rest of header	Fragmented
	512 data bytes	
	Start of header	
	Ident=x 1 Offset=64	
	Rest of header	
	512 data bytes	
	Start of header	
	Ident=x 0 Offset=128	
	Rest of header	
	376 data bytes	

Header fields used in IP fragmentation. (a) Unfragmented packet; (b) fragmented packets. © 2012, Morgan-Kaufmann Pub. Co., Prof. Larry Peterson and Bruce Davie,

Happy birthday

62

Ethernet became 40 *a few years ago!*

