
 (V.0.5, 30 November 2017)	

	 1	

Practical Exercises in Computer Networks and Distributed Systems

Java Sockets and the Client/Server model (WIP)

© 2014-2017, José María Foces Morán

This Lab is devoted to Java Sockets and the Client/Server computing model, we provide an introduction to the
relevant APIs such as Sockets and Streams and carry out the object-oriented design of a simple, Socket-based Java
server program and the corresponding Client program, this C/S design constitutes a basic file download/upload that
can be used to understand the concept of application protocol peer-to-peer interface and its significance.

A brief recollection of TCP/IP and Berkeley sockets

The TCP protocol module in a computer system of today offers some essential services to user programs such as
reliable transmission, flow and congestion control. This variety of objectives makes TCP complex, thus, in order to
isolate the application programmer from the complexity of TCP, programming languages incorporate APIs that allow
programs to communicate via TCP. In the Java language, our language of choice for this course, offers Sockets, an
API derived from the original C-language Berkeley socket API (Application Programming Interface).

Fig. 1. TCP Connection analogy to telephone dialing

TCP is connection-oriented, that means that every time we want to transmit information reliably by using it, the
protocol module will have to establish a connection with the remote computer, the result of this connection is that the
communicating computers share state, a series of data structures that permit the execution of the sliding window,
flow control and congestion control algorithms of TCP.

The Berkeley Socket API, originally programmed in C has been exported to other languages where the similarities are
clear, this was so that interoperability could be guaranteed, for example, when a socket-based server program
written in Java communicates with a client written in Python, we want both programs to interoperate correctly. The
programmer’s task in this case consists of implementing the application-level protocol correctly by sending the
relevant protocol messages over the client and server sockets. The whole process, from connection setup through

Berkeley Sockets5 5 Berkeley Sockets

network, internet

 (V.0.5, 30 November 2017)	

	 2	

connection teardown is illustrated in Fig. 2.

Fig. 2. Berkeley socket connection, communication and teardown

The TCP connection protocol, known as three-way handshake, is initiated when the client program creates a client
socket and connects it with a listening server socket that is accepting connections. The three-way handshake implies
the exchange of three messages between client and server and is normally started by the client in what is known as
an active open. When this process has finished, the server socket and the client socket can begin to exchange app-
protocol messages reliably.

Fig. 3. Three-way handshake started by the client (Active open)

The socket created by the server program waits for connection requests coming from clients, when a new connection
request is received and is successfully completed, this welcome socket generates a new socket (The delegate
socket) which purpose consists of carrying out the bidirectional data transfers with the client socket. The welcome
socket is forever waiting for new connection requests.

SERVER CLIENT

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

close()

1200

80

80

Welcome socket

Delegate socket

Client socket

SERVER
(Stream
Socket)

CLIENT
(Stream
Socket)

SYN

SYN and ACK

ACK + Data

Connection
established

Connection
indication

Connection
requested

Connection
acknowledged

Time

 (V.0.5, 30 November 2017)	

	 3	

Fig. 3. After the three-way handshake, the delegate socket and the client socket begin the data transfer

Sockets as names of processes

A socket is created at the request of an application program executing as a process, such that, once a socket is
created, it effectively identifies the program that created it, that is, if we know the socket we will be able to identify
the unique process that created it. This process is the receiving end of the information conveyed through the socket.
Since a socket gives a process a name, what is, then, the difference between any two sockets?

Fig. 5. Layer-4 demultiplexing keys in TCP

Two sockets within an operating system differentiate by their TCP port numbers, these are 16-bit integers constitute
one of the components of the multiplexing keys at the transport layer, TCP. For example, when a web server

SERVER CLIENT

120080

80

1¼: Three-way handshake

2¼: Full-duplex, reliable channel established

Welcome Socket

Delegate Socket

Client socket

TCP

4

IP3

Applications

7

TCP segment

IP Packet

Demux key is:
(Src Ip, Dst Ip, Src port, Dst port)

proceso proceso proceso proceso proceso

5
Sesi—n

(Sockets)

GDT

 (V.0.5, 30 November 2017)	

	 4	

performs a passive open to establish its Welcome Socket it specifies port number 80, the well-known (Standardized)
port number for accessing the web server from the internet. Well-known ports and their corresponding services are
related in file /etc/services in Unix and Linux and in a similar file in Windows. All in all, the port number applied to a
socket is one of the four components of the TCP mux key (Src Ip, src, port, dst Ip, dst port) turning the socket
interface into a name space for processes within a system, this namespace will allow client sockets to connect with
server sockets and thereby with their creator processes, end-to-end. Figures 5 and 6 illustrate this concept of
sockets as a namespace for processes.

Fig. 6. Example of a demultiplexing key value that identifies a Web client-to-server TCP connection

The Java Sockets API

The package java.net provides the core Sockets API in Java, the most significant classes are the following:

¥ ServerSocket(): An instance of ServerSocket() represents a Welcome Socket which mission, on the server
side, consists of receiving and accepting new connection requests from clients. ServerSocket().accept()
method waits for a connection request, when it is received this method returns a delegate socket, the latter
will actually handle all the data transfers between client and server. Once the ServerSocket completes a new
connection, it can be set to wait for further connection requests.

¥ Socket(): This class represents client sockets and delegate sockets. The method Socket().connect() sends a
connection request to a welcome socket and, if successful, it will be used to send data to/from the server.
On the server side, the delegate socket resulting from the successful connection will be connected to this
client socket from this moment on, thereby handling all data transfers to/from the client. Delegate sockets
and client sockets are represented by Java class Socket().

¥ InetAddress and other classes. These classes permit the representation of relevant IP networking entities

TCP
4

IP3

Applications
7

1
0

2
4

8
0

3
5
8

1
5
6

pro
ces
o

pro
ces
o

web
server pro

ces
o

pro
ces
o

5
80

Session
(Sockets)

TCP
4

IP3

Applications
7

1
0

2
4

1
2
0
0

3
5
8

1
5
6

pro
ces
o

pro
ces
o

firefox
pro
ces
o

pro
ces
o

5
1200

Session
(Sockets)

internet

193.146.96.163 201.1.2.3

(193.146.96.163, 80, 201.1.2.3, 1200) Mux/Demux key for TCP

 (V.0.5, 30 November 2017)	

	 5	

such as IP addresses, port numbers and others.

The next code snippets will help you get a glimpse of the code used to write servers and clients in Java. The code
belongs to the client and server we are going to write next.

Fig. 6.	SERVER creates a ServerSocket and binds it to a well known port

	
Fig. 7.	CLIENT creates a Socket and connects it to server’s ip/port

Fig. 8.	SERVER waits for new connection request

In fig. 8, when the ws.accept() method finishes a new connection, it returns a Socket instance, the delegate socket,
represented by reference name ds. The delegate socket is passed on to a server program instance and the loop
repeats. We will explain this code in more detail later.

A C/S example application in Java
Let’s work a simple example of sockets programming in Java, we are going to program against the Client/Server
(C/S) computing model (See ch. 2 of DK textbook). The client program will upload a file to the server, consequently,
the server will receive it and print out its contents on the console. This will be sufficient for the moment. After this
initial requirements specification we will proceed to design the server program and, then we will write a simple client

 (V.0.5, 30 November 2017)	

	 6	

program complying with the application level protocol built into the server. A more advanced design of the client
program is left as an exercise.

Software design of the server program
Server programs (Hereon, servers) respond to requests typically received over the network, those requests
come from clients and a single server may serve multiple requests concurrently. A web server is a significant
example of this concept. When a server receives a new request, it must parse that request and then,
proceed to satisfy it and return a response to the client. If we want our server to respond quickly or resolve
many requests per unit time, that is, to offer a high performance, then, the server program must delegate
each request to a request handler program that manages it while, concurrently, the server proper continues
to listen for new connection requests that might arrive soon. If we want to attain a maximum performance,
we will have to try to obtain a high degree of concurrency between the server program and the request
handlers that it spawns in response to network requests. Ultimately, we will attempt our software design by
partitioning the server into the server proper and the request handlers so that, server and handlers may run
concurrently thereby maximizing performance, however, we will keep our first design non-concurrent so that
it is simpler and easier to understand, later, on next lab, we will rewrite it to attain concurrency by using
multithreading.

A simple non-concurrent Java server

We aim to modularize our software so that changes, extensions and fixes result as easy as possible to
make, this class breakdown represents the phases the server goes through as it executes and processes a
request. A description of the classes that comprise the server program follows:

¥ FileServerDriver.java: Receives the port number and an option integer (0 for the moment), then it
requests a server instance by invoking a server factory method (ServerFactory_Type0.class), this
object must implement the interface server.class, which has only one method: the server’s
connection tight loop.

¥ Server.java: The servers’ java interface
¥ ServerFactory_Type0.java: This class produces server objects in a static method named

getInstance() as is customary with this design pattern (Factory method). In fact, the fabrication of
the server object reduces to a simple call to Java’s new operator, nevertheless, it serves as an
example of the pattern.

¥ RequestServer.java: This class responsibility consists of wrapping the delegate socket into
ObjectInputStream and ObjectOutputStream objects in such that the ensuing data transfers occur
over these mentioned Java Streams since these are much more powerful and flexible than the
delegate socket (A Java Socket instance). Its run() method creates an instance of
CommandDiaspatcher.java and hands it a copy of the Streams created.

¥ CommandDispatcher().java: CommandDispatcher is responsible for the implementation of the
filetransfer protocol peer-to-peer interface, it receives the up and down streams over which it
interchanges the application-level protocol messages. Properly, in this software project, this is the
class that processes the application-level request, a number of public methods offer the
corresponding services. On the next development stage of this software project, we will further
structure CommandDispatcher into a number of command classes (Command pattern) responsible
for the final stage of request handling. This is the way http requests are handled by web-apps
today.

 (V.0.5, 30 November 2017)	

	 7	

Fig. 9.	Server and Client source packages and files

The classes explained above comprise the server in our C/S project, its modular architecture will allows us to
reuse classes as it evolves in sophistication, for instance, at some point in the term we will substitute
sockets for RMI (Java Remote Method Invocation), our intent is that migrations like that one result as
smooth as possible.

Client and Server interactions in runtime

Now, we want to have a clearer idea of the interactions between the server and the client in runtime, please,
observe fig. 10 as we proceed with this explanation. Fig.10 is a sequence diagram that specifies when
objects are created and what method invocations occur among them, each object has a lifetime represented
by the dashed vertical line, left-to-right arrows represent invocations and right-to-left arrows represent
returns from an invoked method back to the invoking method. This graphical representation will help us
understand the object interactions that will lead to the fulfilling of a protocol request.

FileServerDriver starts by requesting the factory to instantiate a Server, once started, the Server instance
listens on the TCP port specified on the command line of FileServerDriver, when a Client connection request
arrives, the TCP connection is completed (By 3-way handshake), then, the client proceeds to send its
application-layer request (One of the messages that belong to the C/S peer-to-peer interface) and the
server will fulfill this request now. We will study in more detail how the server fulfills the request.

In fulfilling the request above, client and server will complete a TCP connection, interpret the application-
layer request received from the client, adapt that request parameters, if any, and finally execute the server
operation requested. The work of these steps had better be delegated to an object other than the server
itself, this specialization will allow us to evolve the server more smoothly when changes are needed, thus
modifying only those modules related to a proposed change, thereby following the principle of separating
what changes from what does not: This has been our intent here.

Single-Threaded server

The server we have just programmed delegates the management of a new application-layer request to an
object other than the server itself, a question arises now: What does the server while the delegate objects
fulfill the request? Our server simply waits for the delegates to finish the request, and, clearly, while the
server waits it will not be able to complete other socket connection requests (This server has been
programmed to the Java Single-Threaded computing model). Common sense indicates that this is not

 (V.0.5, 30 November 2017)	

	 8	

desirable, for it will cause clients to be arbitrarily delayed or rejected altogether. This behavior is captured
on the sequence diagram: only when the response from the delegates is received can the server restart the
loop where a new connection can be properly dealt with (See the red arrows in fig. 10 after the client
connection request –represented by blue arrows- has been received). In the next laboratory exercise we
will improve the server by using the Multi Threaded computing model, which will attain better throughput by
executing the server concurrently with the delegate request-handling objects.

Fig. 10.	Sequence diagram of server’s objects upon receiving a client request

Wrapping advanced stream classes around sockets

Java programs send and receive data over sockets by using the i/o mechanisms natural to java: Streams. Socket
methods getInputStream() and getOutputStream() return instances of InputStream and OutputStream that permit
reading and writing over the socket’s TCP connection. The services offered by these classes are very simple and
require a substantial amount of work by the programmer when she needs to transfer data other simple arrays of
bytes. Wrapping InputStream and OutputStream into more advanced Java i/o classes resolves this lack of flexibility
and convenience. Fig. 11 illustrates how to wrap socket s OutputStream into an ObjectOutputStream instance, the
latter class supports transferring of full Java objects, directly with no special provision: simply invoke the right method
and pass it the reference to the object we want to transfer. For receiving Java Objects over a socket connection, we
apply the same wrapper pattern to the socket’s InputStream wrapping it into an ObjectInputStream.

FileServerDriver ServerFactory_Type0

Server instance

RequestServer

Client

CommandDispatcher

Request

Response

Server's
tightloop

 (V.0.5, 30 November 2017)	

	 9	

Fig. 11. Wrapping a socket’s OutputStream into an ObjectOutputStream

The following categorization of Java i/o classes is meant to provide you some orientation regarding the vast number
of these classes:

¥ Streams can be wrapped into other streams to provide incremental functionality
¥ Decorator/Wrapper patterns

¥ Primitive: Talk to external devices (underlying streams)
¥ FileInputStream / FileOutputStream
¥ ObjectInputStream / ObjectOutputStream

¥ Intermediate streams: Wrap around already existing streams
¥ If you close a stream that encloses a socket, close() and flush() propagate to sockets
¥ DataInputStream / DataOutputStream (Binary, byte streams)
¥ Readers / Writers (Unicode characters and strings)

¥ Other possibilities:
¥ Classes for buffered streams
¥ Compressed streams
¥ Others

Serialization of data over the wire

Transmission of data, other than arrays of bytes, need to be properly marked and ordered over the TCP

connection (“The wire”), for example when a 32-bit integer is to be sent, sender and receiver must agree how to
order the bytes to be able to reconstruct the same datum sent by the transmitter in the receiver. In general, the
process of transmitting any data type over a byte stream (A socket connection) implies using a data representation
protocol which transmitters and receivers will interpret correctly so that, not only the same byte stream sent is
received but also it’s the semantics is preserved. Java Serialization is helpful in great many occasions in this
situations, but it is not sufficient whenever the client or the server is not written in Java and both must interoperate
correctly. In general, flattening data for transmission when arbitrary clients and servers are involved requires more
general and flexible mechanisms such as those derived from the use of XML (A markup language we will study in the
chapter devoted to the presentation layer), in this case, the flattening process is known as marshaling.

 (V.0.5, 30 November 2017)	

	 10	

Method ObjectOutputStream.writeUTF() serializes a java String object so that when received is correctly
recreated in the receiver. This is illustrated in the following figure:

Fig.12. COMMAND_DOWNLOAD String is serialized when transmitted over an ObjectOutputStream

Exercises

1. Donwload, compile and test the software as provided. You should be able to upload any file from the client
to the server.

2. Identify the most significant code sections:

a. ServerSocket creation and server’s tight loop (The welcome socket)
¥ Server is single-threaded, it delegates the request on other objects, but it must wait for

the to finish before proceeding to receive and complete the next socket connection
b. Client socket connection (It occurs in the constructor of Socket())
c. ServerSocket.accept() returns an instance of Socket (The delegate socket)
d. Wrapping of the socket objects with more advanced Java streams

3. Add a download operation to the application-level protocol, this will allow the client to download a file from

the server. This change will entail that you codify the new operation and implement it by specifying the
sequence of message interchanges that will eventually produce the file download.

 (V.0.5, 30 November 2017)	

	 11	

Appendices

Source code

The source code included hereon is being continually updated, consequently, we publish the updated versions on the
web at the following URL:

http://paloalto.unileon.es/ds/Lab/CS/src-ST.zip

/**
 * Universidad de León, EIII
 * Grado en Ingeniería Informática
 * Asignatura de Arquitectura de Sistemas Distribuidos
 * (C) 2012 José María Foces Morán, instructor.
 *

 * FileServerDriver.java
 *
 **/

package asdfileservice.server;

public class FileServerDriver{

 public static void main(String[] args) {

 if(args.length != 2){
 System.err.print("Usage: fsd <tcp listen port number> <sock
options>");
 System.exit(-1);
 }

 int port = Integer.parseInt(args[0]);
 int userSockOpt = Integer.parseInt(args[1]);

 Server s = ServerFactory_Type0.getInstance(port, userSockOpt);

 s.connectionLoop();

 }

}

 (V.0.5, 30 November 2017)	

	 12	

/**
 * ***
 * Universidad de León,
 * Department of Electrical and Systems Engineering
 * Degree in Computer Science
 * Course on Distributed Systems
 * (C) 2013 José María Foces Morán
 *

 * DS LAB 2 ServerFactory_Type0.java
 *
 * This class produces server objects in a static method named getInstance()
 * as is customary with this design pattern (Factory method).

***/

package asdfileservice.server;

import java.io.IOException;
import java.net.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class ServerFactory_Type0 {

 static final int BASEPORT = 1024;

 synchronized static Server getInstance(int port, int userSockOpt) {

 Server s;

 System.out.println("Creating new welcome socket on port "+ port);
 System.out.flush();

 /*
 * Make sure a root port is not specified, otherwise,
 * return null and finish
 */
 if (port > BASEPORT) {

 s = (Server) new ServerType0(port, userSockOpt);

 } else {

 s = null;

 }

 return s;

 }
}

 (V.0.5, 30 November 2017)	

	 13	

/**
 *

 * Universidad de León,
 * Department of Electrical and Systems Engineering
 * Degree in Computer Science
 * Course on Distributed Systems
 * (C) 2013 José María Foces Morán
 *

 * DS LAB 2 FileServerDriver.java
 *
 * Abstract data type for servers within this project
 *
 *

****/

package asdfileservice.server;

public interface Server {

 public void connectionLoop();

}

 (V.0.5, 30 November 2017)	

	 14	

/**
 * ***
 * Universidad de León,
 * Department of Electrical and Systems Engineering
 * Degree in Computer Science
 * Course on Distributed Systems
 * (C) 2013 José María Foces Morán
 *

 * DS LAB 2 RequestServer.java
 *
 * Single-thread request server: once a socket connection has been
established,
 * this object creates the downstream and the upstream objects and calls a new
 * command dispatcher to take care of the specific client commands received
 * through those streams

***/

package asdfileservice.server;

import java.io.*;
import java.net.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class RequestServer {

 private int global;
 private ObjectInputStream ois;
 private ObjectOutputStream oos;
 Socket ds;

 /*
 * Capture parameters upon object creation via the following constructor,
 * make those parameters global so that they will be properly accessed and
 * used once this object's thread is started via start(), which will
 * properly invoke run()
 *
 */
 public RequestServer(Socket ds) {

 this.ds = ds;

 try {

 ois = new ObjectInputStream(ds.getInputStream());
 oos = new ObjectOutputStream(ds.getOutputStream());

 } catch (IOException ex) {
 Logger.getLogger(RequestServer.class.getName()).log(Level.SEVERE,
null, ex);
 }

 }

 /*
 * This is the method that gets implicitly called when our caller calls

 (V.0.5, 30 November 2017)	

	 15	

 * start() on this object's running thread instance
 */
 public void run() {

 new CommandDispatcher().dispatch(ois, oos);

 }
}

 (V.0.5, 30 November 2017)	

	 16	

/**
 * ***
 * Universidad de León,
 * Department of Electrical and Systems Engineering
 * Degree in Computer Science
 * Course on Distributed Systems
 * (C) 2013 José María Foces Morán
 *

 * DS LAB 2 CommandDispatcher.java
 *
 * Receives the upstream and downstream objects and implements a simple file
 * upload and download protocol upon those streams.
 * This class responsibility consists implementing the the peer-to-peer
 * interface: it receives the up and down streams over which it interchanges
 * the application-level protocol messages.
 *
 * Commands (High level protocol functions) are
 * encapsulated into class methods, they should be moved into Command-pattern
 * command classes, thus, they can more flexibly be reused and their functions
 * more conceptually organized
 *

***/

package asdfileservice.server;

import java.io.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public class CommandDispatcher {

 private final static String COMMAND_DOWNLOAD = "Download byte array";
 private final static String COMMAND_UPLOAD = "Upload byte array";
 private final static String COMMAND_UPLOAD_ACCEPTED = "Upload accepted";
 private final static String COMMAND_UPLOAD_NOT_ACCEPTED = "Upload not
accepted";

 /*
 * Dispatches a command handler according to the received command,
 * which for the time being may only be upload and download
 */
 void dispatch(ObjectInputStream input, ObjectOutputStream output) {

 String command = null;
 String fName = null;

 /*
 * Read command and file name from socket's ObjectInputStream wrapper
 */
 try {
 command = input.readUTF();
 fName = input.readUTF();
 } catch (IOException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);

 (V.0.5, 30 November 2017)	

	 17	

 System.exit(-1);
 }

 /*
 * Determine which command has been received
 */
 if (command.startsWith(COMMAND_UPLOAD)) {

 int fs = 0;

 /*
 * Now, read the file size for this upload from client
 */
 try {
 fs = input.readInt();
 } catch (IOException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);
 }

 System.out.print("Server status:");
 System.out.println(COMMAND_UPLOAD);
 System.out.println("FILE NAME = "+ fName);
 System.out.println("FILE SIZE = " + fs);
 System.out.flush();

 /*
 * Send back the upload command acceptance message
 */
 try {

 output.writeUTF(COMMAND_UPLOAD_ACCEPTED);
 output.flush();

 } catch (IOException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);
 }

 /*
 * Actually perform the recepetion of every byte from the client
by
 * calling method doUpload
 */
 doUpload(input, fName, fs);

 } else if (command.startsWith(COMMAND_DOWNLOAD)) {
 doDonwload(input, output, fName);
 } else {
 try {
 input.close();
 output.close();
 System.err.append("CommandDispatcher exiting due to client
protocol error");

 (V.0.5, 30 November 2017)	

	 18	

 } catch (IOException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);
 }

 }

 }

 /*
 * In this method this Server receives a file
 * (Client uploads file to this server)
 */
 private void doUpload(ObjectInputStream input, String fn, int fSize) {

 System.out.println("--------");
 System.out.println("DoUpload");
 System.out.println("--------");

 //Create array to store the bytes from the uploaded file
 byte b[] = new byte[fSize];

 //Read all the bytes into b
 try {

 System.out.println("Server trying to read "+b.length+" bytes");
 System.out.flush();
 input.readFully(b);
 System.out.println("Finished reading "+b.length+" bytes");
 System.out.flush();

 } catch (IOException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);
 }

 //Simple array contents check:
 System.out.println("Server status: 35 chars from received file");
 for(int i = 0; i < 35; i++){
 System.out.print((char) b[i]);
 System.out.flush();
 }

 /*
 * Create a stream to the local file and use it to actually write all
 * the bytes that comprise it
 *
 * So far, we are not checking whether the file exists or not
 */
 try {

 FileOutputStream fos = new FileOutputStream(fn);

 fos.write(b);
 fos.close();

 (V.0.5, 30 November 2017)	

	 19	

 } catch (FileNotFoundException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);
 } catch (IOException ex) {

Logger.getLogger(CommandDispatcher.class.getName()).log(Level.SEVERE, null,
ex);
 }

 System.out.println("@doUpload. param = " + fn + ". fSize = " + fSize);
 System.out.println(Thread.currentThread().getId() + " finishing.");
 System.out.println();
 System.err.flush();

 }

 private void doDonwload(ObjectInputStream input, ObjectOutputStream
output, String param) {

 /*
 * ----------------------------
 * IMPLEMENT FILE DOWNLOAD HERE:
 * ----------------------------
 *
 */

 /*
 * Multithreading, command and parameter checks:
 * (DELETE WHEN IMPLEMENTING FILE DOWNLOAD)
 *
 */
 System.out.println("@doDownload. param = " + param);

 periodicKeepAlive();

 System.out.println(Thread.currentThread().getId() + " finishing.");
 System.out.println();
 System.err.flush();
 }

 private void periodicKeepAlive() {
 int i = 0;

 /*
 * Keep this thread running for 20 * 5000 ms = 100 sec, keepalive
 * message will be printed every 5 sec
 */

 while (i < 20) {

 System.out.println("This is worker thread #" +
Thread.currentThread().getId());
 System.out.flush();

 (V.0.5, 30 November 2017)	

	 20	

 try {
 Thread.sleep(5000);
 } catch (InterruptedException ex) {

Logger.getLogger(RequestServer.class.getName()).log(Level.SEVERE, null, ex);
 }

 i = i + 1;

 }

 }
}

