

DS LABS
DISTRIBUTED
SYSTEMS PRACTICAL
EXERCISES
Java Streams and TCP Sockets

José María Foces Morán, 2013

Creative Commons License

9 OCTUBRE 2013 1 V1.1

JAVA SOCKETS (TCP)

�  Java Sockets are an abstraction of a TCP reliable
channel

�  Sockets offer a namespace for processes and TCP
channels
�  A way to identify a process running on a computer in

internet

�  Socket knowledge is essential for learning RMI
(Distributed Objects)

9 OCTUBRE 2013 2 V1.1

TCP
4

IP3

Applications
7

1
0

2
4

8
0

3
5
8

1
5
6

pro
ces
o

pro
ces
o

web
server pro

ces
o

pro
ces
o

5
80

Session
(Sockets)

TCP
4

IP3

Applications
7

1
0

2
4

1
2
0
0

3
5
8

1
5
6

pro
ces
o

pro
ces
o

firefox
pro
ces
o

pro
ces
o

5
1200

Session
(Sockets)

internet

193.146.96.163 201.1.2.3

(193.146.96.163, 80, 201.1.2.3, 1200) Mux/Demux key for TCP

JAVA SOCKETS (TCP)

�  Sockets represent a TCP
connection but they hide the
details regarding the process of
connection establishment and
teardown

�  TCP protocol is virtuallly hidden
�  Except for activation/deactivation of

certain features:

�  Nagel’s algorithm

�  A simple introduction to the
Client/Server distributed
computing model (C/S)

9 OCTUBRE 2013 3 V1.1

SERVER
(Stream
Socket)

CLIENT
(Stream
Socket)

SYN

SYN and ACK

ACK + Data

Connection
established

Connection
indication

Connection
requested

Connection
acknowledged

Time

JAVA SOCKET CLIENT/SERVER

�  Server creates a ServerSocket on a
well known port (80, for example)

�  This is the Welcome Socket
�  Welcome Socket Listens forever for

connection requests from Clients
�  If one arrives, executes 3-way handshake

and creates a delegate socket to care for
the forthcoming i/o operations

�  Client creates a Socket and connects it
to server’s IP/PORT
�  This Socket is adequate for performing i/o

operations

9 OCTUBRE 2013 4 V1.1

SERVER CLIENT

120080

80

1º: Three-way handshake

2º: Full-duplex channel established

Welcome Socket

Delegate Socket

Client socket

JAVA SOCKETS, EXAMPLES

�  SERVER creates a ServerSocket
and binds it to a well known port

�  CLIENT creates a Socket and
connects it to server’s ip/port

9 OCTUBRE 2013 5 V1.1

�  SERVER waits for new
connection request

SERVER CLIENT

120080

80

1º: Three-way handshake

2º: Full-duplex channel established

Welcome Socket

Delegate Socket

Client socket

JAVA STREAMS, ABSTRACT CLASSES

�  Streams, an abstraction:
�  Ordered sequence of bytes
�  Storage and retrieval are done sequentially

�  Adequate for almost any external device

�  Abstract classes
�  InputStream

�  Methods for reading data and stream navigation

�  OS must allocate resources beyond memory

�  IOException, checked exception (try/catch)

�  OutputStream
�  Methods for writing data…

�  flush(): output streams usually allocate a buffer to store the data being written

9 OCTUBRE 2013 6 V1.1

JAVA STREAMS LAYERING

�  Streams can be wrapped in other streams to provide incremental functionality
�  Decorator/Wrapper patterns

�  Primitive: Talk to external devices (underlying streams)
�  FileInputStream / FileOutputStream
�  ObjectInputStream / ObjectOutputStream

�  Intermediate streams: Wrap around already existing streams
�  If you close a stream that encloses a socket, close() and flush() propagate to sockets
�  DataInputStream / DataOutputStream (Binary, byte streams)
�  Readers / Writers (Unicode characters and strings)

�  Other possibilities:
�  Classes for buffered streams
�  Compressed streams
�  Others

9 OCTUBRE 2013 7 V1.1

JAVA STREAMS LAYERING

9 OCTUBRE 2013 8 V1.1

The OutputStream of Socket s gets
wrapped into an ObjectOutputStream
instance whose name is oos

Now, we use oos to transmit data
much more easily than with s

OBJECT OUTPUT STREAM

�  Java ObjectInputStream() and ObjectOutputStream() classes serve for
transmitting Java objects directly in a seamlessly manner over these
streams

�  When Java transmits an object it send a series of ordered bytes over a
stream, that ordered sequence, upon reception is deserialized and
trnasformed into a copy of the original object in the addressing
space of the receiving JVM
�  Object serialization example:

9 OCTUBRE 2013 9 V1.1

TWO-SESSION LABORATORY EXERCISE

�  Design and build a simple sockets-based File Service in Java
�  Server listens on TCP port 50001
�  Serves Clients one by one, serially
�  Main protocol functions for now –we will extend it

�  File upload

�  File download

�  Exercise consists of completing and adapting the provided software
�  Today:

�  Get familiar with the software provided
�  Study the file upload command then

�  Implement the file download command by using FileInputStream and FileOutputStream in
CommandDispatcher.java

�  Next Monday:
�  Provide a multithreaded implementation of the server

�  Study the advantages of multithreading, try to estimate the server’s throughput increase

9 OCTUBRE 2013 10 V1.1

BASIC LABORATORY EXERCISE (TODAY)

�  Download source source code from:
�  paloalto.unileon.es/asd/asdfileservice.zip

�  Setup and Compile project according to java package name
(asdfileservice.server and asdfileservice.client):

�  Run server with parameters (port and 0)
�  $ java asdfileservice.server.FileServerDriver 50001 0

�  Then, extend UploadClient.java so such that it retrieves the server IP and
port from the command line, then run UploadClient, which, will connect
and send file /tmp/anyfile to the server
�  Server will honor this request (Observe the peer-to-peer protocol messages interchanged

between cleint and server)

�  Now, your task consists of writing the file download method
�  FileOutputStream, new file on server

9 OCTUBRE 2013 11 V1.1

ADVANCED LABORATORY EXERCISE
(NEXT SESSION)

�  Obtain a multithreaded implementation of the server

�  Design an experimental setup to compare the throughput in single-
threaded vs. Throughput multithreaded

9 OCTUBRE 2013 12 V1.1

