DS LABS
DISTRIBUTED
SYSTEMS PRACTICAL
EXERCISES

Java Streams and TCP Sockets

Jose Maria Foces Moran, 2013

Creative Commons License

web

JAVA SOCKETS (TCP)

|| ___/ApD

Java Sockets are an abstraction of a TCP reliable
channel

Sockets offer a namespace for processes and TCP
channels

A way to identify a process running on a computer in ‘ B ‘ B
internet 4 4

I o
Socket knowledge is essential for learning RMI

(Distributed Objects)
E =

193.146.96.163

9 OCTUBRE 2013

JAVA SOCKETS (TCP)

Sockets represent a TCP
connection but they hide the Socket socke)
details regarding the process of 5 i
connection establishment and

teardown
TCP protocol is virtuallly hidden

Except for activation/deactivation of
certain features:

Nagel’s algorithm
A simple introduction to the

Client/Server distributed
computing model (C/S)

9 OCTUBRE 2013

JAVA SOCKET CLIENT/SERVER

Server creates a ServerSocket on a

well known port (80, for example)

This is the Welcome Socket

Welcome Socket Listens forever for
connection requests from Clients 80 1200

If one arrives, executes 3-way handshake
and creates a delegate socket to care for
the forthcoming i/o operations

Client creates a Socket and connects it
to server’s IP/PORT

This Socket is adequate for performing i/o
operations

- - ==

9 OCTUBRE 2013

JAVA SOCKETS, EXAMPLES

SERVER creates a ServerSocket CLIENT creates a Socket and
and binds it to a well known port connects it to server’s ip/port

Socket s = null;

try {
try {

ws = new ServerSocket(port);

s = new Socket("192.168.2.101", 50001);

} catch (IOException ex) { ObjectOutputStream oos = new ObjectOutputStream(s.getOutputStream());

Logger.getLogger (ServerFactory Typel.c 008 .wEiteUTE (COMMAND UPLOAD) 3
G abl);

System.exit(-1);

SERVER waits for new
connection request

while(true){

try {
ds = ws.accept();
71.1',‘ N
Dispatch a request serve
rs = new RequestServer(ds)
rs.run();

9 OCTUBRE 2013

JAVA STREAMS,ABSTRACT CLASSES

Streams, an abstraction:
Ordered sequence of bytes
Storage and retrieval are done sequentially

Adequate for almost any external device

Abstract classes

InputStream
Methods for reading data and stream navigation
OS must allocate resources beyond memory
IOException, checked exception (try/catch)
OutputStream
Methods for writing data...

flush(): output streams usually allocate a buffer to store the data being written

9 OCTUBRE 2013

JAVA STREAMS LAYERING

Streams can be wrapped in other streams to provide incremental functionality
Decorator/VWrapper patterns
Primitive: Talk to external devices (underlying streams)
FilelnputStream / FileOutputStream
ObjectinputStream / ObjectOutputStream
Intermediate streams:VWrap around already existing streams
If you close a stream that encloses a socket, close() and flush() propagate to sockets
DatalnputStream / DataOutputStream (Binary, byte streams)
Readers / Writers (Unicode characters and strings)
Other possibilities:
Classes for buffered streams

Compressed streams
Others

9 OCTUBRE 2013

JAVA STREAMS LAYERING

The OutputStream of Socket s gets
wrapped into an ObjectOutputStream

instance whose name is 00s

Socket s = null;

try {
s = new Socket("192.168.2.101", 50001);

ObjectOutputStream oos = new ObjectOutputStream(s.getOutputStream());

oos .writeUTF (COMMAND UPLOAD);
oos.flush();

use 00s to transmit data
more easily than with s

9 OCTUBRE 2013

OBJECT OUTPUT STREAM

Java ObjectinputStream() and ObjectOutputStream() classes serve for
transmitting Java objects directly in a seamlessly manner over these
streams

When Java transmits an object it send a series of ordered bytes over a
stream, that ordered sequence, upon reception is deserialized and
trnasformed into a copy of the original object in the addressing
space of the receiving JVM

Object serialization example:

Socket s = null;
try {
s = new Socket("192.168.2.101", 50001);
ObjectOutputStream oos = new ObjectOutputStream(s.getOutputStream());

0os .writeUTF (COMMAND UPLOAD);
oos.flush();

9 OCTUBRE 2013

TWO-SESSION LABORATORY EXERCISE

Design and build a simple sockets-based File Service in Java
Server listens on TCP port 50001
Serves Clients one by one, serially
Main protocol functions for now —we will extend it

File upload

File download
Exercise consists of completing and adapting the provided software
Today:

Get familiar with the software provided
Study the file upload command then

Implement the file download command by using FileInputStream and FileOutputStream in
CommandDispatcher.java

Next Monday:
Provide a multithreaded implementation of the server

Study the advantages of multithreading, try to estimate the server’s throughput increase

9 OCTUBRE 2013

BASIC LABORATORY EXERCISE (TODAY)

Download source source code from:
paloalto.unileon.es/asd/asdfileservice.zip

Setup and Compile project according to java package name
(asdfileservice.server and asdfileservice.client):

Run server with parameters (port and 0)

$ java asdfileservice.server.FileServerDriver 50001 0

Then, extend UploadClient.java so such that it retrieves the server IP and
port from the command line, then run UploadClient, which, will connect
and send file /tmp/anyfile to the server

Server will honor this request (Observe the peer-to-peer protocol messages interchanged
between cleint and server)

Now, your task consists of writing the file download method

FileOutputStream, new file on server

9 OCTUBRE 2013

ADVANCED LABORATORY EXERCISE
(NEXT SESSION)

Obtain a multithreaded implementation of the server

Design an experimental setup to compare the throughput in single-
threaded vs. Throughput multithreaded

9 OCTUBRE 2013 12

