
	 1

DSPro
Optional Practice on Distributed Systems

© 2021 by José María Foces Morán

General guidelines for solving the exercises

• Each exercise is worth 0,25 points out of a total of 1,00 points which is the credit
assigned to the present homework in the course. You have no obligation to deliver
the full homework assignment; any part thereof will count if properly explained
and developed. The mentioned credit does not contribute to the passing mark of the
course, that is the sense in which this practice is optional.

• According to the Syllabus of DS for the current academic year, the right of
submitting DSPro is only granted to those students who are attending the practice
lab sessions regularly.

• Program sources must be clearly commented.

• Apply a simple OO design strategy or structured programming strategy
depending on whether you are programming in Java or in C, respectively.

• Include rich explanations of your design decisions and the unit tests that

demonstrate the correction of your programs.

• You can only submit your original work, programs and explanations. You can
incorporate source code from open software projects, in which case you must cite
the authors and their overall weight must be small.

• Submit the solution to each exercise in a separate folder which name must be

“Exercise 1“, “Exercise 2”, etc. Each folder must contain one folder for the sources
(src), another folder for the explanations (docs) and a last folder for the executable
files (bin). If necessary, include a build dir, also.

• Include build files, written in make, gmake or in Ant.

• Compress the complete folder structure mentioned above in a .zip file (Please, use

.zip exclusively, otherwise, I might not be able to decompress the archive which
might hamper your grade).

• Submit the zip-compressed archive to the agora task titled DSPro:

	 2

Agora task for DSPro 2021

	 3

1. Simple probabilistic time synchronization algorithm

Using ICMP timestamps, build a C program that synchronizes its host’s clock (The
client) with the clock of another host of your choosing (The server). The client
program will fetch the server’s time several times and each time it will calculate
the achieved Rtt and synchronize the clock only considering the minimum Rtt of
the different attempts (Review the Christian’s algorithm).

The program must print out the following items:

i. The delta obtained at each timestamp request

ii. The mean delta; the std deviation; the minimum Rtt

iii. The local time before invoking adjtime()

iv. The local after invoking adjtime()

a. Stop your NTP client altogether. Explain what you do to stop ntp. Consult
the practice that we did in the course practices where we provided you
details about how to stop NTP.

b. Highlight the Linux commands involved in managing the local clock that
you used to perform the tests.

c. How long does adjtime() take for reaching a target time that is 5 min
forward? Devise an experiment to demonstrate that your results are
reasonable.

d. Explain what tests you will perform to demonstrate that the program

functions correctly.

e. Use paloalto.unileon.es for synchronizing your clock.

	 4

2. RFC 868 time protocol

Skim the RFC 868 time protocol and implement the following RFC 868 C/S pairs:

Implemented

over
Client Server

TCP C Java
UDP Java C
JRMP Java

RMI
Java
RMI

a. Deliver each C/S pair in a separate folder which containing the

corresponding sources, executable code and documentation

b. Provide extensive explanations of the considerations and problems that you
found in this question

c. Explain what role marshalization plays in this exercise

d. Explain the tests that you designed to check the code

	 5

3. RMI C/S

Write an RMI server that keeps the counter of certain events in a distributed
system; these specific events are not relevant to this question. Your task consists of
building a Server that implements two remote methods for updating the counter,
one for incrementing it and the other one for decrementing it. The methods’
signatures follow:

long int increment(); //Increments the counter (counter++)
long int decrement(); //Decrements the counter (counter--)

Upon server initialization, the counter must be initialized to 0.

a. Write an RMI client program that allows us to test the server. Deploy the
client and the server in your own Linux infrastructure.

b. Provide an extensive discussion of your software design and the tests that
demonstrate that it functions correctly

c. Highlight the core difficulties involved in this tiny distributed project

d. When you finish this RMI C/S small project, extend it by making your

server available in paloalto.unileon.es and by checking it via Internet:

a. I will open a specific TCP port at paloalto.unileon.es for your own
RMI server; send me a request to chema.foces@unileon.es and I’ll
provide you a port number for your personal use. Remote access to
paloalto.unileon.es with ssh is at port 50500. The port I’ll assign to
you is for your Java RMI server only.

b. paloalto.unileon.es’s public rmiregistry listens at port 1099, however,

Internet access to it is transparently provided to your C/S system via
NAPT at the lab’s router. The external port for accessing rmiregistry
is port number 60001. Now, compose a more detailed explanation
about how this instance of rmiregistry is accessed from anywhere in
Internet.

	 6

4. Correcting a run-time error in the server from the MT C/S
practice

In the practice about C/S with Stream sockets we provided two implementations,
the first was Single-Threaded and the second one was Multi-Threaded:

• Overall concepts about Stream sockets-based C/S and single-threaded
implementation of server:

 http://paloalto.unileon.es/ds/lab/pract3.pdf

 http://paloalto.unileon.es/ds/lab/StreamSock-API.pdf

• Multithreaded implementation of server:

 http://paloalto.unileon.es/ds/lab/serverSolution.c

The multithreaded implementation may produce a run-time error when many
connection requests are received in a relatively small time. Every time the server
receives a new connection request, it creates a new thread and passes it the memory
address (A pointer to) of the int variable that holds the delegate socket. When a large
number of connections are received in a relatively short time, it is possible that the
variable is unexpectedly changed by a young thread while one other thread is still
using for implementing the application-layer protocol. This will create a number of
undesirable effects not the least stale connections that will never be fully closed, for
example. Follow the outline below here to profiling this problem better and
providing a solution to it:

a. Explain the problem with your own words.

b. Create an environment for reproducing the problem.

c. Document the results that you have obtained.

d. Devise a solution to this problem, implement it and demonstrate that it
works.

