All rights reserved © 2024 by José Maria Foces Moran and José Maria Foces Vivancos

Comments and overall guidance to DS homework #2 (2024)

To gain some insight into how the protocol stack processes IP packets that carry TCP
payloads, we’ll analyze packet P4 from homework #2 (2024). This brief analysis is meant
to improve your confidence as you progress with hw#2.

Analysis of trace packet number P4

For convenience, I'm including a sketch of packet P4 along with the two standard
protocol headers encapsulated. Notice that the options included in the tcpdump
command line preclude the Ethernet header, which indeed was sent along with
the IP and TCP headers. The protocol stack is this:

T
TR

|

L

Eer

Figure 1. Protocol stack to P4 from hw#2 trace.

The protocol stack can be deduced from the tcpdump trace. Again, it is necessary
that we recall that the Ethernet header has been omitted from the tcpdump
parameters such that the output not be cluttered. Consequently, the first group of
bytes constitute the IP packet header, followed by the TCP header. The last bytes
correspond to the TCP payload submitted by the application protocol “Hello
World :-)”.

Explanation of the IP packet header. In fig. 2 you can find the tcpdump trace
that we explain here. The header structures to IP and TCP PDUs from the
relevant RFCs are included here for convenience.

Look at the P4 tcpdump trace, now. You'll identify the IP packet first there,
which is highlighted in yellow. Let’s see how long the IP header is by looking at
its IHL field. This field spans bits 4-7 at from the Internet Datagram Header (On the
upper area of fig. 2). The IHL value is 5, according to the hexadecimal value 45
that appears on the trace. This means that the IHL (Internet Header Length) is:

5 x 4 Bytes = 20 Bytes

All rights reserved © 2024 by José Maria Foces Moran and José Maria Foces Vivancos 4



All rights reserved © 2024 by José Maria Foces Moran and José Maria Foces Vivancos

Consequently, after our simple calculation, the IP header weights 20 Bytes
spanning byte indexes 0x0000 to 0x0013 on the trace. This area has been highlited
in light yellow. 20 Bytes is the IP header size that will show up most frequently in
the practicals and in the homework in DS and in CN.

So far, we have successfully delimited the IP header. Now, it’s time for us to
interpret the information carried in it. Simply, read the tcpdump explaining text
included in the trace:

e Protocol encapsulated: TCP
( proto TCP (6) )

e Let’s check that that is true by interpreting the HEX dump:
According to IP header structure from the IP RFC, the
Protocol field spans Byte number 9. The value contained
in that byte number is: 06.

e Yes, the protocol number is 06, which according to the official protocol
number database is: TCP (In Linux /etc/services). That is what we
expected.

Explanation of the TCP segment header. Now we turn our attention to the TCP
segment header where we want to prove that P4’s TCP segment does have its
ACK flag set. This fact cannot be derived from the explaining text produced by
tcpdump. The relevant area in the tcpdump trace is highlighted in light blue,
however, we won’t provide a full demonstration that that is the area spanned by
the segment. Nevertheless, you can rely on the relevant calculations which have
been carefully made, though not provided here. For our immediate purpose of
checking the ACK flag, none of those calculations are necessary since the TCP
segment will span at least the initial 20 Bytes in the TCP header and the ACK flag
is always to be found therein.

Turn your attention to the TCP Header Format, at the lower area of fig. 2. Identify
the ACK flag in the row that starts at byte number 12. The relevant bits are
expanded on the handwritten diagram that is located at the right side of TCP
Header Format. You identify the ACK flag by counting bits starting at byte
number 12. Recall that each row from the TCP header spans 32 bits (4 bytes) and
the ACK is on the fourth row (Rows numbering starts at 0), thereby starting at
Byte12=(4-1)*4=3*4=12.

Not only should ACK be set in this segment, but it should be set in all the
segments comprising the trace, except the initial segment, PO, in which the client
is sending a connection request to the server. That specific segment should never
have its ACK set. Since it is the initial segment, it cannot acknowledge any
segment received in the past, because there were no past segments; consequently,
ACK cannot not significant and it is not set. As a simple exercise, check that ACK
is actually not set in segment encapsulated into PO (See fig. 3).

All rights reserved © 2024 by José Maria Foces Moran and José Maria Foces Vivancos 5



All rights reserved © 2024 by José Maria Foces Moran and José Maria Foces Vivancos

Finally, observe, as well in P4, that the payload encapsulated into TCP is 15 Bytes
long (length 15). And that those 15 bytes are indexed with sequence numbers 1 to
15 (Look for tcpdump text: seq 1:16). The meaning of that text is that the SN
that applies to the first byte is 1, the last one being (16 - 1). Index 16 means that
byte index 16 is the next in-order byte that will be sent by this sender. 16, will, in
the future have to the the ACK SN value that the receiver will have to send back
as the accumulated, positive acknowledgment to the told byte block (1 to 15).

?\" -

= A~ 5r4B=20B8, & No ophitus
3038 =20 By, + Tyl e

0 1 2 3
01234567890123456789012345678901

|version| IHL ®|Type of Service| Total Length /43U~
S S S R S O S St S S S ol S
Identification |Flags| Fragment Offset |
s e S S S s SUE S S S
| Time to Live | Protocol | Header Checksum
B e SHc N S U S S
Source Address
e s T St S S S S S
Destination Address
e S s
Options | Padding |
S S S S S S S S

e
¥
-

Example Internet Datagram Header ~——

14:49:25.354988 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto TCP (6), ) q'lo.B\j"" 0043

> 1 Flags [P.], cksum 0x5148 (correct), seq 1: 16 , win 2058, options
[nop,nop, TS val 147097171‘ icr 4113457662], |length 15

0x0000: 4502 0000 4000 4006 b700 c0a8 010a E..C..Q@.Q.....

0x0010: cO0a8 UIb8 &223 c35Imygerigrpucaflli2fle ...X.#.0t..... y
0x0020: 80'_8 080ar 5148 0000 0101 080a 57ad 3f42 ....QH...... W.?B @
0x0030: ES52wielfe 4865 6c6c6£200776£7726C16420°

0x0040: ~3a2d 99 ‘Po‘ o

0 1 2 3
01234567890123456789012345678901
S e St S S
| Source Port €223 | Destination Port (354 |
St S I S S S e St S S 0123 ¢S6F el RIINIT
| Sequence Number 13 2 [y
S s e N S S i S NG
| Acknowledgment Number col/ 244 o | Defe.
SN Miurirb e Gl ot bbbttt i
| Dpata | |u|ajp|R|S|F| |
| offset| Reserved |R|C|s|s|¥|I] Window | 6
LR e el S |
| Checksum | Urgent Pointer | DCJL
e St S S S S R O S S
| Options | Padding | Une
B T e T T T R S
|
+

data |
B s S L s s S St S s = ] A.CK
TCP Header Format Seb o

Figure 2. Packet P4 from trace alongside the IP and TCP headers from RFCs.

P1 SYV flog et

14:49:25,.354585 IP (tos Ox0, ttl 64, id 0, offset O,
192.168.1.10.49699 > 192.168.1.88.50001: Flags |

Totzd (wc,‘kk
F], proto TCP (6),

W), cksum 0x3f42 (correct), 1959256602, win 6553

options [mss 1460, nop,wscale 6,nop,nop,TS val 14 14 ecr 0,sackOK,eol], length 0
0x0000: 4500 0040 0000 4000 4006 b705 cO 0l0a E..Q@..@.@.......
0x0010: <c0a8 0158 €223 €351 74¢c7 e21a 0000 0000 ...X.#.Qt....... TL? w - 6q~20 : L{L{ B
0x0020: b ERED 3£42 0000 0204 05b4 0103 0306 ....7B...evecenn - ——
0x0030: '0101\080a 57ad 3f42 0000 0000 0402 0000 ....W.?B........ /

P2 SyN sel? Ack set?

Figure 3. Analysis of P1 (The conn request TCP segment)

All rights reserved © 2024 by José Maria Foces Moran and José Maria Foces Vivancos 6



