STREAM SOCKETS

THE INTERFACE TO THE TCP PROTOCOL

All rights reserved © 2019 José Maria Foces Moran and José Maria Foces Vivancos V1.526/11/19 22

Datagram socket C/S model

Datagram
socket of
each client

(O —

Single
Server
Process

Datagram
socket
of
server

Datagram socket C/S model

One server 1is started
listening on a port EE§E>Immm

processes socket of
each client

Creates one Datagram Socket
Many UDP clients Access it

All traffic from all T Somaer

Process

clients is received by this C ‘ D —
single socket) [

socket
of
server

This single socket will
pass the traffic from all
clients to the server
process

All rights reserved © 2019 José Maria Foces Mordn and José Maria Foces Vivancos V1.5 26/11/19 on

Stream socket C/S model

Stream
socket of
each client

Connec ted
sockets

Single
Passive Server
socket Process

S

TCP con

|
| hect
\ Jf

Internet

Stream socket C/S model

* Server process creates
passive stream socket

Connec ted
sockets

* Welcome socket

Passive stream socket
accepts new connection
requests

* Creates a new connected
socket for each client

Delegate socket

Internet
Each connected socket is
handled by a new server
thread

All rights reserved © 2019 José Maria Foces Mordn and José Maria Foces Vivancos V1.526/11/19 26

Stream Sockets: The interface to TCP

e TCP is connection oriented

5 Berkeley Sockets a Berkeley Sockets

* The client contacts the
server and both establish
the parameters of the
communication

This might resemble the
dialing from a phone to
another phone

All rights reserved © 2019 José Maria Foces Morin and José Maria Foces Vivancos V1.5 26/11/19 57

TCP connection created by enacting 3-way
handshake

SERVER CLIENT
(Stream (Stream
Socket) Socket)

i i

[I

1 1

e A typical TCP connection is
established by having the
Client and the Server
Exchange 3 messages:

0 1 © == B3 S
e S -> C: ACK and SYN

0 G == S8 /AeiK

All rights reserved © 2019 José Maria Foces Mordn and José Maria Foces Vivancos V1.5 26/11/19 8

The multiplexing keys at work in TCP

Each connection represents
a bidirectional flow
between two processes

* The Client (C)
* The Server (S)

Each process creates a

sockaddr 1in

socket thét has a full I [Sesitr—

) IP
J Port

Therefore, the TCP mux key
is comprised of four
numbers

e (Client IP

Client Port
All izglth reserved © 2019 José Maria Foces Mordan and José Maria Foces Vivdqncos

V1.5 26/11/19 29
+ Server Ip B KN

* Server Port

Example about mux keys in TCP

web
server

L | /Apl ﬂ[[ﬂ]ﬁi# L | |Applif
Server is started at TCP

port 80 : 1 00 ™ . ®
Client connects with server

e TIts local port is 1200

The TCP multiplexing key is| ™ "= I Z—

s =1193:146599.163

el E mE
201.1.2.3
1200 193.146.96.163

It is used in the C stack
and in the S stack for

All il;}vpgsg'gtﬂ'@p?gl 9 Fsb'ﬁng:l:mp%ggﬁ‘l%% @ﬂ%g Foges Vivancos

. 1.526/11/19 30
the S process respectively

Stream Client Server
socket
lifecycle

Client socket socket ()
Created

* Stream socket
SOCklet() Created

v |
v

bi d() Socke't address
Applied

;
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|

\/

l
|
|
:
\

Not strictly bll’ld()
necessary :
]
|
! listen() Socket becomes a
: ! Welcome socket W
Y [SYN |
connect ()] [ACK/SYN] [ACK] ;
1
v
Client socket 1
Connected
: accept() Delegate socket D
\ ! Created (Connected)
: W
write() » é
| eq uGSt |
i i
1
! D] read()
! Reliable data :
: Transfer |
v v
D .
read() [Cle— Tesponse ﬂwrlil:e()
I
l .
\/ \/
close() close() Delegate socket
: | Closed
I
! I
\ 4 '/ Server finished
client finished Vr’;xegilent’s

Welcome Socket
Still ready for
New connections

__________________ create TCB
snd SYN

- RFC 793 specifies TCP

* TCP state diagram represents [= | 770
the state changes of stream @B | | .

sockets = 0 | _____________

* Citing RFC 793, Closed is a
"fictional” state = [. . . ACKof SYN \ / rcv SYN,ACK emcecmee-

* Listen applies to the Welcome
Socket only SN | _______

* Estab is the state the
connected sockets are in when ['~ 77 s EIN/ b sndACKk
they Exchange Data. The = [| w1l |---ceccoecomoo——m | WA
Sliding Window algorithm | | rov ACK of FIN ——---o-
governs reliable data | + « v sarmw

transfer

°* State changes are caused by a [| v oo | TiMEOUEs2MSL —--omooooooo

socket receiving a legitimate [\sd Ak te--o—ootdelete TB 4o-oooooe

and expected protocol = Hmmm 4@ et demmmeeees
message ’ e. g .y SYN TCP Connection State Diagram

Figure 6.

Verbatim copy of RFC 793 TCP State diagram in pg. 23

* The receiving socket, in
general, also sends some
response protocol message,
e.g., ACK-SYN after receiving
SYN

V1.526/11/19 32

socket() call for a stream socket

Not strictly bin
necessary

write()
1

v

Server

Stream socket
SOCklet @] Created

\

bind() Socket address
Applied

1
!
v

listen() Socket becomes a
! Welcome socket W

[ACK) ;

accept() Delegate socket D
)

é’ﬂ Created (Connected)

Tequess

Reliable data
Transfer

(Dl rea!d()

read() [C=

clo§e()

v

client finished

v
—{Dlwrite()
1

response

1
close() Delegate socket
i Closed

1

1

v Server finished
With client’s
request

Welcome Socket
Still ready for
New connections

Create a Stream socket (TCP):
#include <sys/socket.h>

fd = socket(domain, type, protocol);
Domain: AF_INET; AF_ INET6
Type: SOCK_DGRAM, SOCK_STREAM

Protocol: 0

V1.526/11/19 33

bind() call for the

Welcome socket

Client

1
1
1
1
1
| Stream socket
! SOCkIEt() Created

|
|
Client socket SOCk‘et() !
Created *
bind() Socket address
| Applied

v
listen()Ijl Socket becomes a
[

! Welcome socket W
[SYN] rac v
connect () %@
1

Client socket

Connected
accept() Delegate socket D
[

é @l Created (Connected)
T

write €
te() [g reques,

\
Dl read()
Reliable data :
Transfer

|
v
—{Dlwrite()
1

read() [Fe— Tésponse
1

close() close() Delegate socket
: Closed
|
|
v Server finished
With client’s

request

client finished

Welcome Socket
@l Still ready for
New connections

Server

socketAddress.sin family =
AF INET;

int port = atoi(argv[l]);

socketAddress.sin port =
htons(port);

socketAddress.sin addr.s_addr
INADDR_ANY;

bind(

14

(struct sockaddr *) &socketAddress,

sizeof (socketAddress)

#include <sys/socket.h>

int bind(int fd,
const struct sockaddr *addr,

)

V1.526/11/19 34

listen() call for the
Welcome socket

Client

1
1
1
1
1
| Stream socket
: SOCkIEt() Created
1
|
Client socket SOCk‘et() ;
Created
bind() Sock(?t address
1 Applied

.y
listen()Ijl Socket becomes a
! Welcome socket W

[SYN] A i
connect () %@
1

Client socket
Connected
accept() Delegate socket D
i

Created (Connected)
write C é
te() [g request .‘ =

\
Dl read()
Reliable data :
Transfer

read() [Fe— Tésponse
1

|
v
—{Dlwrite()
1
i i

close() close() Delegate socket
: Closed
|
|
v Server finished
client finished With client’s
request

Welcome Socket
@l Still ready for
New connections

#include <sys/socket.h>

listen(welcomeSocket, 5);

Sets welcomeSocket as a welcome
socket and sets the length of the
queue of completed connections
(The backlog) to 5.

As the welcome socket receives
each TCP connection request it
stores each completed connection
request in the backlog queue.

A later call to accept() on the
welcomeSocket will extract the
completed connection on the gqueue
head and turn it into a fully
functional delegate socket.

This doc. was obtained from $ man
listen in a kernel which version
is greater than Linux 2.2

V1.526/11/19 35

listen() call for the
Welcome socket

e
Syn - Delegate
\\‘\/- listen() . .----—- socket
P
Ack-Syn \ .

.~~~ Passive Queue of completed

. socket Connections
Ack socket()

#include <sys/socket.h>

listen(welcomeSocket, 5);

Sets welcomeSocket as a welcome
socket and sets the length of the
queue of completed connections
(The backlog) to 5.

As the welcome socket receives
each TCP connection request it
stores each completed connection
request in the backlog queue.

A later call to accept() on the
welcomeSocket will extract the
completed connection on the gqueue
head and turn it into a fully
functional delegate socket.

This doc. was obtained from $ man
listen in a kernel which version
is greater than Linux 2.2

V1.526/11/19 36

accept() call for the

Welcome socket

All rights veserved © 2019 José Maria Foces Morin end José Maria Foces Vivancos

socket ()
1

\ :
Client socket[g socket () \
Created *

bind()

1
1
1
1
1
1
|

\/

Not strictly bind()

necessary

€--—-——————=

listen()
1

[SYN] [a

1
connect () %’;
v

Client socket *
accept()
i

Connected

write €
te() [g requesy

\/
[0 read()
Reliable data :
Transfer

|
v
read() [Fe— ﬂwrﬁlze()

' v

clolse() close()
1

response

v v

client finished

Server

Stream socket
Created

Socket address
Applied

Ijl Socket becomes a
Welcome socket W

Delegate socket D

é @l Created (Connected)
T

Delegate socket
Closed

Server finished
With client’s
request

Welcome Socket
@l Still ready for
New connections

Server

#include <sys/socket.h>

int delegateSocket = accept(
welcomeSocket,

(struct sockaddr ¥*)
&clientAddress,

&addressLength

- welcomeSocket must be in the
listen state

- accept() extracts the connection
on the queue head and turn it into
a fully functional delegate
socket. This socket allows
reliable bidirectional data

transfer

V1.526/11/19 37

connect() call for the

Client socket

Client

1
1
1
1
1
| Stream socket
: SOCkIEt() Created
1
|
Client socket SOCk‘et() ;
Created
bind() Sock(?t address
1 Applied

v
listen()Ijl Socket becomes a
[

! Welcome socket W
[SYN] rac v
connect () %@
1

Client socket

Connected
accept() Delegate socket D
[

é @l Created (Connected)
T

write d
te() [g reques,

\
[0 read()
Reliable data :
Transfer

|
v
—{Dlwrite()
1

read() [Fe— Tésponse
1

close() close() Delegate socket
: Closed
|
|
v Server finished
With client’s

request

client finished

Welcome Socket
@l Still ready for
New connections

Client: connection to server
struct sockaddr in server;

server.sin family =
AF INET;

server.sin port =
htons(port);

server.sin_addr.s_addr =
inet addr (ipAddress);

int r = connect

(

sock,
(struct sockaddr *) &server,

sizeof (server)

V1.526/11/19 38

listen() call for the
Welcome socket

Client

1
1
1
1
1
I Stream socket
! SOCkIEt() Created

|
|
Client socket SOCk‘et() !
Created *
bind() Socket address
| Applied

.y
listen()Ijl Socket becomes a
! Welcome socket W

1
[SYN] [ACK/SYN] [ACK] ;
Client socket I

Connected
accept() Delegate socket D
[

é @l Created (Connected)
T

write €
te() [g reques,

\
Dl read()
Reliable data :
Transfer

|
v
—{Dlwrite()
1

read() [Fe— Tésponse
1

close() close() Delegate socket
: Closed
|
|
v Server finished
With client’s

request

client finished

Welcome Socket
@l Still ready for
New connections

Server and client

read() and write() system
calls do result convenient
with stream sockets

- The file descriptor
represents the TCP connection

- Writing means sending from
the side that calls write() to
the other side

- Reading is exactly the
opposite

V1.526/11/19 39

