
 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 1

Appendix 1. The Java ANT utility: Managing the production of
programs

Computer applications encompass manyfold software elements, not the least their
core of programs themselves, but also libraries, configuration files and the versions
thereof. Managing their production processes and automating their documentation
entails using an advanced software tool, a build tool. Included in software
development environments, build tools help programmers manage the numerous
parameters and procedures that are tailored to each specific build.

In addition, distributed applications entail a build tool that is itself distributed so that
construction and deployment can be achieved in coordination with other build tools
or with other remote software. There are a bunch of build tools available today, some
of them are tailored to specific development environments, some others are more
focused on specific types of applications. The ANT build tool, which we present here,
is based on Java and is specialized for Java development, and offers features that make
it a good fit for distributed development. ANT facilitates Java development, since it is
a Java application. However, it doesn’t preclude other languages, or a mix thereof. In
this tutorial, we present ANT with the aim of making easier doing those programming
practices from this book which are written in Java. We include a forthcoming tutorial
similar to this one for presenting the MAKE build utility, the legendary build tool
included in the AT&T original invention of the UNIX operating system which original
aim was development in C and Bourne Shell scripting.

Guided overview of ANT

Developing a simple C/S application will enable us to acquaint ourselves with ANT.
The technical intricacies to the application itself are explained with detail in the lesson
on Distributed Objects; for the time being though, we’ll be contented with focusing on
ANT and will take for granted the software design itself.

The application’s server (S) program exports a remote object that offers two remote
methods. Those methods are to be called by the application’s client (C). As is
mandatory in Java RMI, the same host that executes the server must also run at least
an instance of Java’s platform program rmiregistry. This program stores a copy of the
server’s proxy object, which will be used later by the client as a stand-in object
representing the remote object. Thus, the client, by calling the methods of the stand-
in object, ultimately will be able to invoke the remote object’s methods. The diagram
in fig. 100 captures these essential Java RMI elements.

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 2

Figure 100. Overall structure of the example project

Java ANT helps us manage the compilation, deployment and execution of the server
and the client, the launching of the server host’s rmiregistry and the uploading of the
server’s remote interface to a web server accessible to the client. Java ANT, can be
configured to take care of the dependencies among the different software elements
mentioned above. That is great help whenever runtime errors happen as the
foreseeable, endless repetitions of the development cycle will be enacted, since each
will involve numerous software elements, running in separate JVMs which may be
run in separate hosts.

Simply skimming the text below, which describes the example project will set us off
taking stock of Ant without the need to have it installed beforehand. After studying
the example’s process of software construction and deployment, if you deem it
convenient for you, you can proceed to the actual installation of Ant. At that moment
you’ll be able to fully test the software construction and deployment under your own
infrastructure.

When you finish skimming this example project deployment, you’ll be more familiar
with ANT, and that will help you grasp the essential concepts and possibilities of ANT
more easily. It figures that this tutorial requires Java and the Java Compiler installed
in your system and that we assume Linux as the operating system, despite that being
true, we think that the software that we are illustrating here will function on OS-X,
Unix with only minor modifications, if any. Follow this outline of steps to fully deploy
and run the distributed project:

1. Open an ssh session in host HB or login into that host directly from its console,
for example:

$ ssh your_login_name@192.168.1.99
…

2. Download the project’s source files. Use a web browser or an http download
utility such as Linux’s wget or OS-X curl to download the zip file that contains
the source code:

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 3

$ wget http://paloalto.unileon.es/ds/lab/rmipract.zip

Check file rmipract.zip was successfully downloaded:

$ ls -l
total 16
-rw-r--r-- 1 networks networks 12678 Nov 8 10:32 rmipract.zip

3. Decompress the .zip file by using an appropriate decompressor like unzip:

$ unzip rmipract.zip

Check the resulting file tree with the Linux tree command or a similar one:

$ tree
.
├── build
├── build.xml
├── __MACOSX
│ └── src
│ ├── client
│ └── server
├── rmipract.zip
└── src
 ├── all.policy
 ├── client
 │ ├── all.policy
 │ └── Client.java
 └── server
 ├── SDRemoteObjectImpl.java
 ├── SDRemoteObject.java
 └── Server.java

8 directories, 8 files

Directory __MACOSX is relevant to OS-X file browser, however, we’ll leave it
as is. The remaining directories have this import here:

• src: This directory contains project sources and configuration text files,
organized into subdirectories that represent the Java package structure of
the project.

• build: The class, jar files and others resulting from the compilation and
linking of the project will be saved here.

• build.xml file: This file contains the instructions ANT will apply when
forming the project build. The format of this file is xml, the xml markup
language. All the elements relevant to ANT, such as properties, targets,
external actions, libraries, etc. are specified within this file. The
specifications are formatted within the included xml tags that ANT
understands and which carry its semantics.

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 4

4. XML text file build.xml contains the sequences of instructions that ANT will
follow to build the various target libraries, classes and other types of files that
comprise the final project runtime. In addition, file build.xml carries
instructions for deploying the runtime along its support programs (rmiregistry,
for example) and for orderly executing each. If this deployment requires file
uploading and downloading at remote systems, ANT supports execution of the
ssh-based scp utility (The secure copy utility is based on the Secure Shell suite
of protocols and applications. Check out its man page if you need to see more
detail).

Overall, ANT’s build file contains the following sections. You can skim the file’s
actual contents as the explanations unfold, below. The build file is formatted in
XML (Extensible Markup Language), consequently, you’ll immediately notice
that it is composed of a number of XML tags specific to ANT and others which
are relevant and specific to our concrete project under development:

• Project name: The project name is included in an ANT’s XML tag
which name is project. It is used for marking the start section of ANT’s
XML build file:

<project name="DSRmi" basedir="." default="run_server">

The closing tag is : </project>

• Properties: This section allows creating symbolic strings that will help
name the different elements that constitute the project in a manner
practical, simple customized to the programmer’s. For example, the
following line creates a symbolic string that will be used for identifying
the IP address of a web server relevant to the project:

<property name="webserver.ip" value="192.168.1.99"/>

Targets: Each target specifies a procedure that will be executed by ANT
whenever the user commands it to and which will lead to the production
of one of the project’s elements such as a library, a class file, a jar file, etc.
In the following example about target “compile_server”, a server
program is compiled and a certain file required by RMI is copied to a
web directory. Compiling occurs first; file copy occurs next, as expressed
by the ordering of the actions within the target’s tag:

<target name="compile_server" depends="clean_server">

 <javac
 srcdir="${server.src.dir}"
 destdir="${server.dir}">
 <compilerarg value="-encoding" />
 <compilerarg value="utf8" />
 </javac>

 <copy file="${server.dir}/${package.name}/SDRemoteObject.class"
 todir="${webdir}/${package.name}"/>

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 5

</target>

The tag <javac> is used for executing the Java compiler command-line
utility javac. The parameters values passed to it, such as srcdir, destdir
are taken from the properties ANT tag, at the beginning of the build
file, where they are initialized.

The <copy file …/> tag included on the last section of target
“compile_server” copies the stub class file to an appropriate
destination directory.

The depends argument depends=”clean_server” passed in the
target tag specifies that whenever the user executes this target, target
“clean_server” should always be executed before.

Skim the contents of file build.xml and check that you can identify the main
sections listed above. You may use the Linux more command, for example:

$ more build.xml

5. Compile the server. Let’s begin by compiling the server, and let’s do so not by
invoking the javac command, but by having ant do that by fetching the right
ant target from file build.xml. The relevant ant target is “compile_server” which
you just skimmed. Compose the following command:

$ ant compile_server
Buildfile: /home/networks/book/build.xml

clean_server:
 [mkdir] Created dir: /home/networks/book/build/server

compile_server:
 [javac] /home/networks/book/build.xml:58: warning:
'includeantruntime' was not set, defaulting to
build.sysclasspath=last; set to false for repeatable builds
 [javac] Compiling 3 source files to
/home/networks/book/build/server
 [copy] Copying 1 file to /var/www/html/dsrmipract

BUILD SUCCESSFUL
Total time: 0 seconds
$

Notice that ant launched target “clean_server” first, which is in accordance
with the depends instruction included in the target that was meant to be
executed, “compile_server”. Check the text to that target if you wish. Then,
“compile_server” is itself launched which runs javac first and then the file copy
next to it.

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 6

The copied file is the compiled Java interface of the remote object exported by
the server. This compiled Java interface is dubbed a stub and is required so that
rmiregistry can enact its service of storing remote object proxies. The stub has
been compiled within the same target “compile_server”.

All these operations are reported to be successful. You may disregard the
warning altogether for the purposes of this overview.

We won’t run the server yet, even though we successfully compiled it. The
server, i.e., the RMI Server requires an instance of rmiregistry running in the
same host where the server is being run, consequently, we must launch
rmiregistry before deploying and running the server. Again, we’ll resort to ant;
this time the target is “rmiregistry”.

6. Launch rmiregistry. The relevant target is “rmiregistry” and the action it will
launch whenever we invoke it from the command line is <exec …>. The Linux
command passed as argument to the <exec …> tag is rmiregistry, which should
have been installed along the JRE (Java Runtime Environment) installation.
Type the following ant command:

$ ant rmiregistry
Buildfile: /home/networks/book/build.xml

rmiregistry:

BUILD SUCCESSFUL
Total time: 0 seconds
$

The rmiregistry should be running as a background process; check it by
executing the following ps command:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
networks 23351 23349 0 12:16 pts/0 00:00:00 -bash
networks 23424 1 0 12:49 pts/0 00:00:00 /usr/bin/rmiregistry -J-Djava.rmi.server.useCodebaseOnly=false
networks 23454 23351 0 12:52 pts/0 00:00:00 ps -f
$

Rmiregistry is running, its PID (Process ID) is 23424.

7. Run server. The server can be launched now. We will use ant target
“run_server”. This task has two direct dependencies, namely “compile_server”
and “rmiregistry”. If we had forgotten to run rmiregistry before starting the
server, the target’s dependencies would have started rmiregistry for us, and
everything would look the same as in the execution included right below.
Launch the server with ant’s help, now:

$ ant run_server
Buildfile: /home/networks/book/build.xml

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 7

clean_server:
 [delete] Deleting directory /home/networks/book/build/server
 [mkdir] Created dir: /home/networks/book/build/server

compile_server:
 [javac] /home/networks/book/build.xml:58: warning:
'includeantruntime' was not set, defaulting to
build.sysclasspath=last; set to false for repeatable builds
 [javac] Compiling 3 source files to
/home/networks/book/build/server
 [copy] Copying 1 file to /var/www/html/dsrmipract

rmiregistry:

run_server:
 [java] ---
 [java] - Remote objects instantiated -
 [java] - Remote objects registered (Java RMI registry) -
 [java] - Server running -
 [java] ---

The server is running now, in consequence, the two remote methods included
in the source code should be available now for remote invocation. We can
confidently run a client that sends some remote invocation to the server’s
exported remote object and expect to receive the return value from the remote
method.

8. Compile the client. Generally, testing the client calls for running it in a host
other than the server’s host (HB). We’ll open a session in another host (HA)
physically connected to the same LAN as HB. This is not a requirement, though:
the client and the server can be run within any Internet host as far as they have
IP connectivity with each other. Having the client and the server within the
same LAN is just a matter of convenience, as it were, given the manyfold goals
that apply to this example, simplicity being not the least:

The relevant IP addresses are the following:

• HA : 192.168.1.88
• HB : 192.168.1.99

We’ll open an ssh session in host HA, now for us to compile the client.

$ ssh your_login_name@192.168.1.88
…

Download the project files as we did in step 1, then compile the client by calling
ant’s target “compile_client”:

$ ant compile_client
Buildfile: /home/administrator/book/build.xml

clean_client:
 [mkdir] Created dir: /home/administrator/book/build/client

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 8

compile_client:
 [copy] Copying 1 file to /home/administrator/book/src/client
 [javac] /home/administrator/book/build.xml:76: warning:
'includeantruntime' was not set, defaulting to
build.sysclasspath=last; set to false for repeatable builds
 [javac] Compiling 2 source files to
/home/administrator/book/build/client

BUILD SUCCESSFUL
Total time: 0 seconds
$

Target “compile_client”, first copies the compiled Java interface (File name is
SDRemoteObject.java) so that it gets compiled along with the client’s Java
source file. The client uses this interface to cast the remote object’s proxy
fetched by accessing rmiregistry. Since compilation was successful, we run the
client now which should contact the remote object’s methods by means of the
Java RMI runtime.

9. Run the client. Have ant run target “run_client” by composing the command
included in the lower terminal in figure 200. The server program uses the upper
terminal window which we launched in step 7.

Figure 200. Client in lower terminal running against remote object in upper

terminal.

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 9

This example is comprised of sundry software, some of which was developed from
scratch, as well as Java system software, namely the rmiregistry, and finally a Java
interface that was to be uploaded to a web server for seamless remote access by
application clients. All these software elements were deployed by using an Ant script,
flexibly and with ease. In addition to the features that we have showcased here, Ant
offers many others. A summary of the most powerful ones is worth which will provide
us a glimpse into Ant for future reference.

Summary of outstanding Ant Concepts and Possibilities

• Cross-platform. The command-line tool that launches the Ant utility is a shell
script (Compatible with the POSIX shell standard) that ultimately runs the Ant
Java application. In general, ant will run on any platform that runs Java,
making it a cross-platform build utility.

• New Ant functionality is attained by adding new Java classes. Extending Java

Ant means adding functionality through new Java classes that plug with its
current Java class support. The power of Java object-oriented programming is
made available for adding new features that might be necessary in specific
development circumstances. Since Java Ant is an open source project, all of its
current sources are public and, by definition, collaboration in evolving the
project is its raison d’être.

• Builds are specified in XML files. Ant build files are written in XML by using
Ant’s specific namespaces. Ant concepts are represented as XML tags.
Examples of Ant concepts are property, task, target, and a few others. All of them
have a representing XML tag that developers use for expressing which ones are
to be launched, with what arguments and in what order so that the intended
development semantics is achieved.

• Implementations of Java Ant task interfaces allow programmers to specify the

execution of actions that lead to a project’s specific development stages. Ant is
naturally extended by extending its classes and interfaces, namely by applying
the concepts of OO programming.

• Ant exec task allows executing any native operating system command. In the

above example, rmiregistry was launched by a Java ant <exec> tag.

Swift ANT Installation Guide

The Ant software distribution is offered at this URL: https://ant.apache.org/. The
level of detail to the technical documentation is high and contemplates the habitual
sundry of possibilities related with the target operating system release, the underlying
hardware platform and user-related install options. If you can afford a mainstream
Ant installation and your interest in it stems from your interest to use it for the

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 10

practicals included in this book, then you might find it convenient to follow the
streamlined installation procedure included below. Follow this quick installation
outline on the assumption that if problems appear, then you should resort to the full
instructions provided in the Apache Foundation Ant URL.

We assume that your Linux distribution is one of Debian or Ubuntu. If you use a
different one, adapting this installation procedure to it will not be difficult. The output
of the uname command in our system yields:

root@protocol:/home/networks# uname -a
Linux protocol 4.19.0-18-amd64 #1 SMP Debian 4.19.208-1 (2021-09-29) x86_64
GNU/Linux

The versions of the Java runtime and the Java compile that we currently use in our
system for practicals are the following:

root@protocol:/home/networks# java --version
openjdk 11.0.14 2022-01-18
OpenJDK Runtime Environment (build 11.0.14+9-post-Debian-1deb10u1)
OpenJDK 64-Bit Server VM (build 11.0.14+9-post-Debian-1deb10u1, mixed mode,
sharing)
root@protocol:/home/networks# javac --version
javac 11.0.14

The Ant release we will install is 1.10.x which fits the requirements for Java 8 and
newer versions; an overall installation procedure follows:

1. Download the zip file that contains the Ant distribution

https://dlcdn.apache.org//ant/binaries/apache-ant-1.10.12-bin.zip

2. Download the digital keys for verifying the downloaded zip file

https://downloads.apache.org/ant/KEYS

3. Download the asc file that carries the pgp key (Pretty Good Privacy)

https://downloads.apache.org/ant/binaries/apache-ant-1.10.12-bin.zip.asc

4. Install the pgp (Pretty Good Privacy) distribution:

Switch users to super-user
root@protocol:/home/networks# su

Update software packages
root@protocol:/home/networks# apt update

Upgrade the installed software packages themselves
root@protocol:/home/networks# apt upgrade

Install the gpg software package
root@protocol:/home/networks# apt install gpg

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 11

Check that the zip file, the asc file and the KEYS file are in the
present directory
root@protocol:/home/networks# ls
apache-ant-1.10.12-bin.zip apache-ant-1.10.12-bin.zip.asc KEYS

5. Check the ant distribution’s zip file digital signature:

root@protocol:/home/networks# gpg --verify apache-ant-1.10.12-bin.zip.asc
gpg: assuming signed data in 'apache-ant-1.10.12-bin.zip'
gpg: Signature made Wed 13 Oct 2021 06:50:47 AM CEST
gpg: using RSA key 8DA70C00DF7AF1B0D2F9DC74DDBCC1270A29D081
gpg: Good signature from "jaikiran@apache <jaikiran@apache.org>"
[unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to
the owner.
Primary key fingerprint: 8DA7 0C00 DF7A F1B0 D2F9 DC74 DDBC C127 0A29 D081

The signature is good, however, the owner’s identity could not be verified, so
our trust will be based only on the merit that the software was downloaded
from the Apache Foundation’s official site. Nevertheless, we should triple
check that, if our installation were for a productivity environment.

6. The manual pages to the Ant distribution can be found within the downloaded
distribution, under the manual directory. The manual can also be accessed from
the web at this link:

http://ant.apache.org/manual/index.html

7. Unzip the distribution files:

root@protocol:/home/networks# unzip apache-ant-1.10.12-bin.zip
root@protocol:/home/networks# cd apache-ant-1.10.12-bin
root@protocol:/home/networks# ls
bin etc INSTALL LICENSE patch.xml
CONTRIBUTORS fetch.xml KEYS manual README
contributors.xml get-m2.xml lib NOTICE WHATSNEW

8. Change directories to bin directory and execute Ant from there for checking
that it is installed and for checking its version, also:

root@protocol:/home/networks# cd bin
root@protocol:/home/networks/bin# ./ant -version
Apache Ant(TM) version 1.10.12 compiled on October 13 2021

9. Copy the files that were uncompressed from the zip file to /usr/local/ant and
export the ANT_HOME variable to the shell’s environment; finally, for
convenience, have it added it to your PATH:

root@protocol:/home/networks/bin# cd ..
root@protocol:/home/networks# mkdir /usr/local/ant
root@protocol:/home/networks# cp -r * /usr/local/ant
root@protocol:/home/networks# export ANT_HOME=/usr/local/ant
root@protocol:/home/networks# export PATH=$PATH:$ANT_HOME

 All rights reserved ©2020-2023 by José María Foces Morán and José María Foces
Vivancos

All rights reserved © 2020-2023 by José María Foces Morán and José María Foces Vivancos 12

Include the previous exports in your .bashrc startup file so that both
are executed every time you request a new terminal

Logout now and log back in to check that the intended ant configuration
is available; check by calling ant from a new terminal as in Fig. 300.

Figure 300. Ant checks after installation

