
v.1.6 – Oct 2021

	 1

Practices on Computer Networks and Distributed Systems

Wall clock time and Distributed Systems

All rights reserved © 2015-21 by José María Foces Morán & José María Foces
Vivancos

1. Sending and receiving ICMP timestamps in C with the Raw Sockets API
	
Raw Sockets allow programmatic access to the IP layer. In this practical we use Raw Sockets to write a
program that sends and receives specific types of ICMP messages with the intention of retrieving the time of
of day of another host that will ultimately allow it to have its clock synchronized. Synchronizing a clock entails
being able to speed it up and to slow it down. The POSIX-compatible function that in Linux allows the clock to
be sped up/slowed down in order for the clock to be synchronized is adjtime().

Exercise 1.

a. Check the type of clock synchronization client that is in use in your Linux

$ systemctl status systemd-timesyncd

If your system is using the full fledged Linux NTP client, follow the relevant instructions in section 2,
below.

b. Assuming that your system is using systemd-timesyncd, read the resulting listing and confirm the IP
address of the time server that your system was using until now. Check that the transport protocol is
UDP and that the associated port is 123.

c. Stop the NTP client so that the time synchronization program we wish to build doesn’t conflict with it
in taming the clock:

$ systemctl stop systemd-timesyncd

d. Print the current system’s daytime with a µs precision:

$ date --rfc-3339=ns

e. Set the clock time 2 minutes later than the current time; see this example:

$ date -s ‘2021-10-22 09:20:00’

f. Our example time synchronization program is based on the ICMP protocol’s Timestamp request and
Timestamp response messages. In order for our program to send ICMP Timestamp request
message, we will open a Raw Socket upon our stack’s IP protocol which will allows to craft one such

v.1.6 – Oct 2021

	 2

message and later have it sent over the socket towards the Internet host that we want to use as
reference for our local clock.

Download the raw sock icmptimestamp.c program from paloalto.junileon.es/ds/lab/icmptimestamp.c
and test it. The program should contact the host which IP you entered into the program and, if the
ICMP Timestamp request makes it to that host and the response is successfully delivered to our local
host, then, the program will calculate the amount of µs necessary to set your local clock in sync with
the remote system’s clock. The process of updating the local time is achieved by calling Linux
function adjtime(). That function will speed up or slow down the clock to achieve the synchronization
without ever setting the clock backwards, which is absolutely forbidden. Run the program once and
observe that in a few minutes of slowing it down, it will reach the target time. Use the following
example as orientation:

Fig. 1. The Linux clock is about 5 min behind the clock of the OS-X system

Fig. 2. The icmptimestamp program has sent an ICMP Timestamp request message to

193.146.101.46 and has received an ICMP Timestamp reply. The local clock is now being sped up to
reach the clock time of that host.

v.1.6 – Oct 2021

	 3

$ sudo su

./icmptimestamp

The instructor will provide you a guidelines to complete this exercise.

Exercise 2. Have icmptimestamp program emulate the behavior of the Christian’s algorithm by repeatedly
retrieving the time from another system, then calculating the average and finally properly using adjtime() for
adjusting the clock. You will observe that repeated calls to the program time retrieving function fail, then, we
will have to solve this problem by modifying the program so that it runs fine in repeated calls? Wireshark will
be able to report to you the error condition that you will have to discover and which prevents the
aforementioned repeated calls from functioning all right (Make sure you sudo the resulting program, for, Raw
Sock programs need superuser privileges to be executed).

1. If using OS-X, you need to enable the following property:

$ sysctl net | fgrep icmp | fgrep times

net.inet.icmp.timestamp: 0

2. Enable it:

$ sudo sysctl -w net.inet.icmp.timestamp=1
Password:

net.inet.icmp.timestamp: 0 -> 1

3. Check it:

$ sysctl net | fgrep icmp | fgrep times

net.inet.icmp.timestamp: 1

4. Start Wireshark, set filter ‘icmp’

5. Compile the icmp timestamp requester program (gcc …: Ok) and run under Linux and
have the program contact the MacBook Air at 192.168.2.? that we just reconfigured:

$ sudo testicmpts 192.168.2.106

6. Monitor the icmp traffic with WS and check the program’s output

v.1.6 – Oct 2021

	 4

2. Querying the state of a Unix/Linux NTP Client
	
As we reviewed in the Lectures, the Internet protocol used today for synchronizing clocks is NTP (Network
Time Protocol), we can query its basic parameters by issuing the OS-X and Linux command ntpq and can
estimate the Rtt with our NTP server by using ping and traceroute. Before practicing with these commands,
let’s peek at the RFC of the NTP protocol.

Exercise 3. Donwload and skim NTP’s RFC and tell what transport it uses and the port number used by NTP
servers.

Exercise 4. Monitor the NTP traffic from your host by running Wireshark, use a display filter ‘ntp’; you may
have to wait a few minutes before some NTP traffic appears. Confirm that the transport and the port you
established in the preceding question are correct. Depict an NTP protocol graph.

Exercise 5. Decode fields in the NTP request packet sent by your client, then, respond to the following
questions related to the NTP concepts developed on the lectures:

a. What NTP stratum does your server belong in?

b. What physical connection exists between your server and the physical atomic clock?

c. Explain the meaning of the Reference, Origin and Receive Timestamps

d. What is the field width of the aforementioned timestamps? They’re represented with fixed-point
numbers that represent a number of seconds, what’s the smallest number of seconds
representable? And the maximum?

Exercise 6. Issue the following command which queries your NTP client configuration, then, respond to the
ensuing questions

$ ntpq -pn

a. What’s the polling frequency used by your client?

b. What is the delay between your client and the NTP server?

c. What does jitter mean? Jitter represents the variability of the delay, does that make sense?

d. What’s the Rtt resulting from the execution of ping against the server? Is it equal to the ntpq’s
delay field?

3. Wall clock time and the ICMP protocol
	

v.1.6 – Oct 2021

	 5

One of the functions of the icmp protocol allows a system to find out another system’s wall clock time so that
the difference between both clocks can be calculated and thus, eventually, compensated for. The next
experiment consists of two computers, Mac and Linux connected via Internet, the Mac use wants to discover
how much its clock is skewed versus that of Linux, to that end, she executes the following Unix (OS-X)
command:

$ sudo timedc
 Passwd:
 timedc> clockdiff 192.168.2.122
 timedc: 192.168.2.122 will not tell us the date
 time on 192.168.2.122 is 47161 ms. behind time on Mac-2.local

Fig. 3. The Mac computer sends several back-to-back icmp timestamp requests to the Linux
computer, after that, the Mac receives 10 icmp destination unreachable messages from Linux

The timedc at Mac (192.168.2.106) command controls the UNIX timed daemon which sends icmp timestamp
requests to Linux (192.168.2.122) and, for each one of them it expects to receive an icmp timestamp
response; then, the command, interprets the contents of the icmp response and computes the time
difference, which in this case results in Linux being 47161 ms behind Mac1. See the following timed UNIX man
page for more detail:

	
1 Usually, instead of saying “Mac is behind”, “Mac is slow” is used in the field of computer wall clock time.

20+
exchanges

LinuxMac

Internet

icmp timestamp request

icmp timestamp response

10
icmp

datagrams

LinuxMac

Internet

icmp dest unreachable

v.1.6 – Oct 2021

	 6

Fig.2. The OS-X $ man timed highlighting that timed is a server program capable of slowing down or speeding
up other system’s clocks to have them within average network time.

The exercises that follow illustrate the mentioned icmp protocol exchanges. Before starting to work the
exercises, please, download the RFC where the ICMP protocol was documented by the IETF, it will be
necessary to decode the WS (Wireshark) traces included alongside the exercises (Mac computer’s host name
is Brainstorm and the Linux computer’s is Josephus).

Exercise 6. Observe the Request/Response sequence caused by the execution of timedc at Mac, what
protocol encapsulates those ICMP R/R messages? (See fig. 3).

Exercise 7. Consult the RFC that you just downloaded and map the fields of the Type 13 message to those of
the WS trace at Fig. 4.

Exercise 8. According to the WS trace of Fig. 5., how many bits make up any of the three relevant timestamp
fields of the included ICMP Type 14 message.

Exercise 9. See Fig. 6 which contains the last message of the WS trace and provide a speculative explanation
of it.

v.1.6 – Oct 2021

	 7

Fig.3. timed daemons exchanging icmp timestamp messages to bring the slave’s clock (Linux computer whose

name is Josephus) into sync with the server (The MAC computer whose name is brainstorm).

Fig.4. timed daemons exchanging icmp timestamp messages to bring the slave’s clock (Linux computer whose
name is Josephus) into sync with the server (The MAC computer whose name is brainstorm).

v.1.6 – Oct 2021

	 8

Fig.5. Timestamp reply, concrete ICMP type 14 message fields appearing in WS trace

Fig.6. Last icmp message

	

v.1.6 – Oct 2021

	 9

Appendix A: Source code of the icmptimestamp.c program
	
/*
 * Parts of this source code were taken from the
 * W. Richard Stevens' book on Unix Network Programming
 * (Prentice-Hall 1998)
 *
 * Refactorization, additional comments and adaptation
 * for the purposes of the CN Lab by José María Foces Moran 2014
 *
 * Technical details about the structure of the ICMP datagram and IP
packets
 * may be obtained from RFC
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#include <sys/types.h>
#include <sys/param.h>

#include <sys/time.h>
#include <sys/file.h>

#include <sys/socket.h>
#include <arpa/inet.h>

#include <netinet/in_systm.h>
#include <netinet/in.h>

#include <netinet/ip.h>
#include <netinet/ip_icmp.h>

#include <netdb.h>
#include <unistd.h>

#include <errno.h>

#define TRUE 1

/*
 * #Bytes of data, following ICMP header (Stevens' UNIX Net Programming
book)
 * Data that goes with ICMP echo request
 */
int datalen = 12;

struct sockaddr targetHost; //generic sock address for the target host
int rawSocket;

int nsent = 0;
int pid;

#define MAXIPHEADERLENGTH 60

v.1.6 – Oct 2021

	 10

#define MAXICMPPAYLOADLENGTH 76
#define MAXIPPACKETSIZE (65536 - 60 - 8)
#define MAGICSEQN 512

struct timeval originateTimeval, receiveTimeval;
long tsorig, tsrecv;

long tsdiff;

int initSocket(char *targetHostIpDDN) {

 int rawSock;
 struct sockaddr_in *inetTargetHost; //inet socket address for target
host
 struct protoent *protocol;

 bzero((char *) &targetHost, sizeof (struct sockaddr));
 inetTargetHost = (struct sockaddr_in *) &targetHost;
 inetTargetHost->sin_family = AF_INET;
 inet_aton(targetHostIpDDN, &(inetTargetHost->sin_addr));

 protocol = getprotobyname("icmp");

 rawSock = socket(AF_INET, SOCK_RAW, protocol->p_proto);

 return rawSock;

} //end of initSock()

unsigned char *createPacket(int *packlen) {

 unsigned char *packet;

 *packlen = datalen + MAXIPHEADERLENGTH + MAXICMPPAYLOADLENGTH;

 packet = (unsigned char *) malloc((unsigned int) *packlen);

 return packet;

}//end of createPacket()

/*
 * The source code of function internetChecksum are original from
 * W. Richard Stevens' book on Unix Network Programming
 * (Prentice-Hall 1998) in its entirety, no modification has been
 * carried out by JMFoces whatsoever except for the function name
 */
unsigned short internetChecksum(u_short *addr, int len) {
 int nleft = len;
 int sum = 0;
 unsigned short *w = addr;
 unsigned short answer = 0;

 while (nleft > 1) {
 sum += *w++;
 nleft -= 2;
 }

v.1.6 – Oct 2021

	 11

 if (nleft == 1) {
 *(unsigned char *) (&answer) = *(unsigned char *) w;
 sum += answer;
 }

 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return (answer);
}

void sendRequest() {
 int len;
 struct icmp *icmp;
 unsigned char requestPacket[MAXIPPACKETSIZE];

 icmp = (struct icmp *) requestPacket;
 icmp->icmp_type = ICMP_TSTAMP;
 icmp->icmp_code = 0;
 icmp->icmp_seq = MAGICSEQN;
 icmp->icmp_id = pid;

 gettimeofday(&originateTimeval, NULL);
 tsorig = (originateTimeval.tv_sec % (24 * 3600)) * 1000 +
originateTimeval.tv_usec / 1000;
 icmp->icmp_otime = htonl(tsorig);
 icmp->icmp_rtime = 0;
 icmp->icmp_ttime = 0;

 len = datalen + 8;

 icmp->icmp_cksum = internetChecksum((u_short *) icmp, len);

 sendto(rawSocket, (char *) requestPacket, len, 0, &targetHost, sizeof
(struct sockaddr));

}

int processPacket(char *buf, int n, struct sockaddr_in *from) {
 int headerLength;
 struct icmp *icmp;
 struct ip *ip;
 struct timeval delta;

 //Compute IP header length
 ip = (struct ip *) buf;
 headerLength = ip->ip_hl << 2;

 //Subtract header length from n
 n -= headerLength;
 icmp = (struct icmp *) (buf + headerLength);

 /*
 * Discard all ICMP packets which ICMP type is not
 * RFC 792 type value 14 for timestamp reply message represented by
 * ICMP_TSTAMPREPLY constant
 */

v.1.6 – Oct 2021

	 12

 if (icmp->icmp_type == ICMP_TSTAMPREPLY) {

 if (icmp->icmp_seq != MAGICSEQN)
 printf("Spurious sequence received %d\n", icmp->icmp_seq);
 if (icmp->icmp_id != getpid())
 printf("Spurious id received %d\n", icmp->icmp_id);

 //Receive timestamp
 tsrecv = ntohl(icmp->icmp_rtime);

 //Difference between Receive timestamp and originate timestamp:
 tsdiff = tsrecv - tsorig; // ms

 printf("Originate = %ld, receive = %ld\n",
 ntohl(icmp->icmp_otime), ntohl(icmp->icmp_rtime));
 printf("Adjustment = %ld ms\n", tsdiff);

 delta.tv_sec = tsdiff / 1000;
 delta.tv_usec = (tsdiff % 1000) * 1000;
 printf("Correction = %ld sec, %ld usec\n", delta.tv_sec,
delta.tv_usec);

 /* adjtime() makes small adjustments to the system time,
 * as returned by gettimeofday(2), advancing or retarding it by
the time
 * specified by the timeval delta
 *
 * See the man page for adjtime
 */
 adjtime(&delta, (struct timeval *) 0);

 return (0); //Timestamp reply
 } else
 return (-1); //Not timestamp reply
}

void receiveResponse(int packetLength, unsigned char *packet) {
 struct sockaddr_in from;
 int nbytes;
 int fromlen;

 while (TRUE) {
 fromlen = sizeof (from);
 nbytes = recvfrom(rawSocket, (char *) packet, packetLength, 0,
 (struct sockaddr *) &from, &fromlen);

 if (nbytes < 0) {
 printf("Bytes received < 0");
 fflush(stdout);

 if (errno == EINTR)
 continue;
 else
 perror("recvfrom error");
 }

 if (processPacket((char *) packet, nbytes, &from) == 0)
 exit(0);

v.1.6 – Oct 2021

	 13

 }

}

int main() {
 unsigned char *packet;
 int packetLength;

 pid = getpid();

 rawSocket = initSocket("192.168.2.106");

 packet = createPacket(&packetLength);

 sendRequest();

 receiveResponse(packetLength, packet);

} //end of main()

	

