

Except where otherwise indicated, this work is © 2016 by José María Foces Morán and its contents is mainly based on the textbook by Coulouris, Dollimore, Kindberg and Blair. Distributed Systems: Concepts and Design, Edition 5, © Addison-Wesley 2012

Characterization of Distributed Systems

The components of a DS are located at *networked computers* and communicate and coordinate by passing *messages*

- 1. Introduction
- 2. Examples of distributed systems
- 3. Trends in distributed systems
- 4. Focus on resource sharing
- 5. Challenges
- 6. Case study: The World Wide Web

1. Leverage the value of this lecture:

Attempt solving the <u>questions</u> about <u>Networking</u> included at the beginning of Questionnaire SG-DS-1.0.pdf (Questionnaire no.1 of DS; paloalto.unileon.es/ds/SG/SG-DS-1.0.pdf).

Take class <u>notes</u>

2. Have the textbook by Kindberg et al. at hand

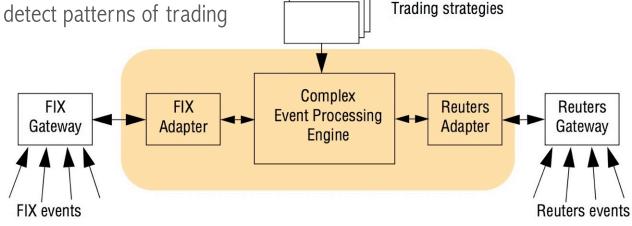
- The physical book is in our Library
- A pdf versión is available
- 3. After the lecture, solve all the questions included in the Questionnaire mentioned above
 - If you need assistance
 - After that, bring your <u>questions</u> to the next **B1** session
 - Attend one of the **Tutor Teaching** sessions

- A Distributed System is made up of a set of networked computers (physically separated) that coordinate their actions by only interchanging messages and which objective consists of sharing resources
 - Processes running at different hosts are **concurrent (Actually parallel)**
 - Hosts coordinate by exchanging messages, only
 - Accuracy of clock synchronization is limited, **no global clock**
 - **Independent failures**: Other nodes may still run after one fails
 - **Resource sharing** is the main motivation

+ Examples of Distributed Systems

Finance and commerce	eCommerce e.g. Amazon and eBay, PayPal, online banking and trading
The information society	Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace.
Creative industries and entertainment	online gaming, music and film in the home, user- generated content, e.g. YouTube, Flickr
Healthcare	health informatics, on online patient records, monitoring patients
Education	e-learning, virtual learning environments; distance learning
Transport and logistics	GPS in route finding systems, map services: Google Maps, Google Earth
Science	The Grid as an enabling technology for collaboration between scientists
Environmental management	sensor technology to monitor earthquakes, floods or tsunamis

Index the contents of the entire web (63 billion pages)


- A major challenge, one of the most complex DS in history
- Highlights
 - Large number of nodes
 - Distributed file system
 - Distributed storage system
 - Distributed file locking
 - Parallel programming allowed

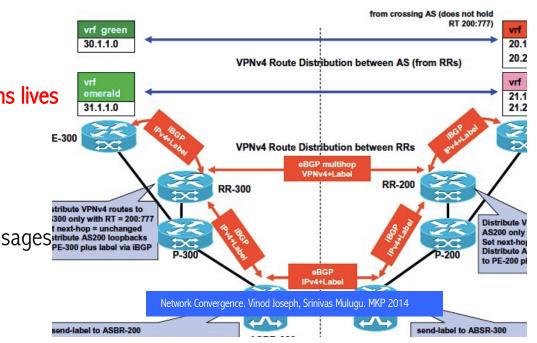
- Massively Multiplayer Online Games
- Over 50000 simultaneous players
- Fast response times
- Real time propagation of events to many players
- Solutions proposed:
 - 1. Client-server architecture, a single copy of the state of the world
 - Server: A powerful cluster
 - Load is partitioned
 - 2. Geographycally distributed architecture (Physical. Proximity)
 - 3. Radically new architectures based on peer-to-peer computing (decentralized)

+ Examples: Financial trading

- Cutting edge distributed systems used in this industry
- Essential: Reliable and and timely delivery of events
 - Architecture: Distributed event-based systems
 - FIX (Financial Information eXchange protocol)
 - Support heterogeneity
 - Adapter systems
 - Real time processing to detect patterns of trading
- Manage risk
- Regulations compliance
- Fraudulent transactions

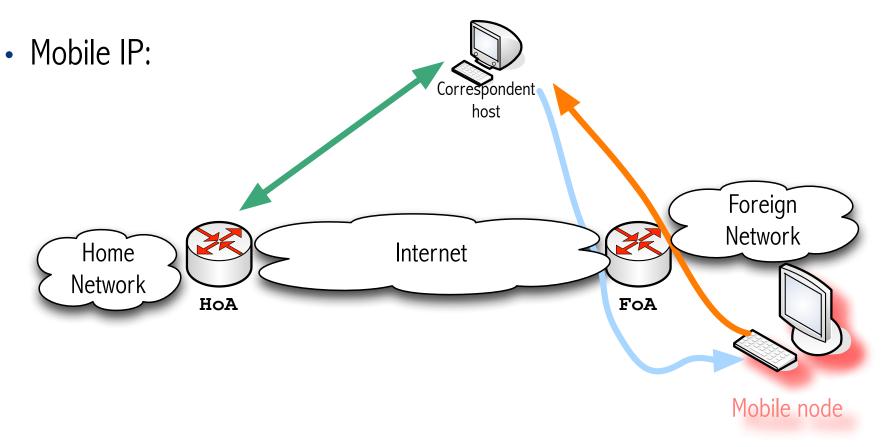
DS are undergoing significant changes at present

Pervasive Networking and Internet


Mobile and Ubiquitous Computing

Distributed Multimedia Systems

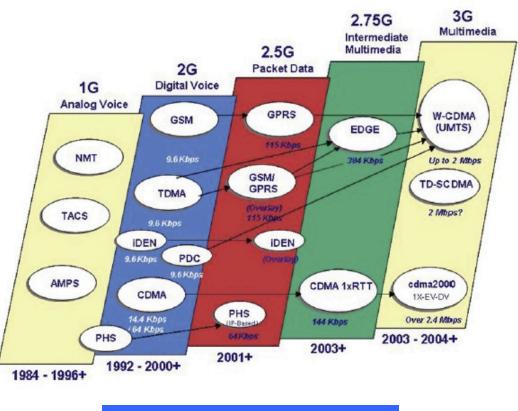
Distributed Computing as a Utility


+ Pervasive Networking, Modern Internet

- Modern networking technologies
 - WiFI, WiMax, LTE, MPLS
- Networking is becoming pervasive
 - Affecting more and more aspects of persons lives
- Protocols
 - Abstracting a myriad of technologies
 - Programs can run anywhere and send messages tribute AS200 loopbacks PE-300 plus label via IBGI to any node
- Web ≠ Internet
- Intranets, firewalls: filter incoming and outgoing messages

- Users who are away from their 'home' network
 - Can still access shared resources on their home networks

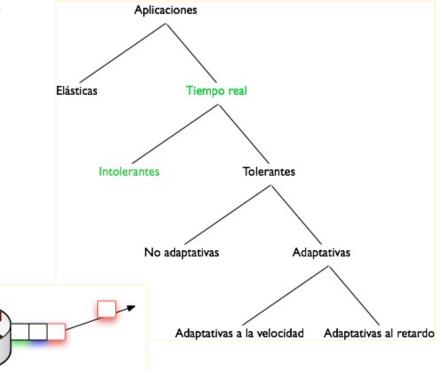
+ Ubiquitous Computing


- Connecting the cheap computing devices present in the physical environment
 - Home, office and natural things
 - IOT = Internet Of Things
 - IOE = Internet Of Everything
- Spontaneous interoperation
- Service discovery
- Device associations

+ Distributed Multimedia Systems

Multimedia

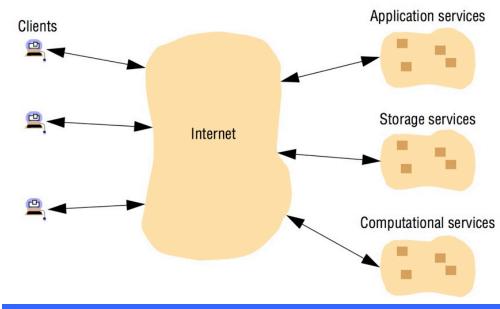
- Discrete media
 - Pictures
 - Text
- Continuous media (Temporal dimension, considerable demands)
 - Audio
 - Video
 - IP telephony
 - WebCasting
 - Video Conferencing



Network Convergence. Vinod Joseph, Srinivas Mulugu. MKP 2014

+Quality of Service (QoS)

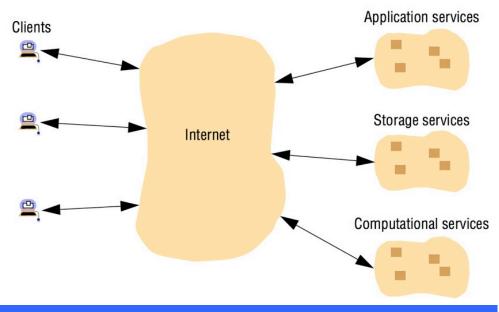
Applies to Network and Operating Systems alike


- Non-functional requirements
 - Reliability
 - Security
 - Performance
 - Response time
 - Throughput
 - Delay and jitter
 - Loss

+ Distributed computing as a utility

Distributed resources as a commodity or a utility

- Regardless of company or brand
 - Water supply
 - Electricity
 - Wheat
- Resources are <u>rented</u>, not owned
- Physical resources
 - Sophisticated Data Centers
 - OS virtualization:
 - Virtual nodes, not physical nodes
 - Flexibility



From Coulouris, Dollimore, Kindberg and Blair. Distributed Systems: Concepts and Design, Edition 5, © Addison-Wesley

Software services

+ Utility computing = *Cloud computing*

- Everything is a service
- Reduces requirements of users devices
- Implemented on cluster computers
 - CLUSTER: <u>High speed LAN</u> <u>interconnection of hosts</u> collaborating in speeding up a large computational load
 - Blade servers in a rack

From Coulouris, Dollimore, Kindberg and Blair. Distributed Systems: Concepts and Design, Edition 5, © Addison-Wesley

When Distributed Systems are programmed in an Object-Oriented language (Java; C++)

- Resources are encapsulated as objects
 - Client objects
 - Server objects

+ Challenges: Heterogeneity

- Networks
- Hardware
- OS
- Languages
- Implementations
 - Masked by the abstractions of Communication Protocols

heterogeneity | ,hɛt(ə)rə(ʊ)dʒɪ'ni:ɪti |

noun [mass noun]

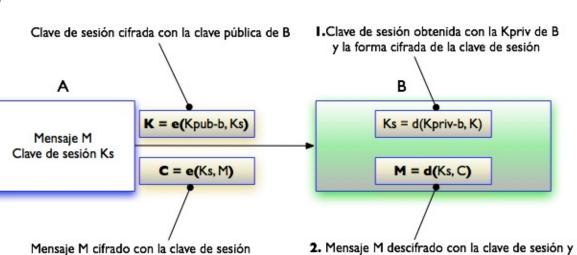
the quality or state of being diverse in character or content: the genetic heterogeneity of human populations.

- What about data types?
 - Before data can be exchanged there must be an agreement about their physical representation: *Marshalling*

Middleware

- CORBA is a specification of which
 many implementations exist
- JAVA RMI is a part of the Java platform

Refers to DS components specification and documentation


- If key interfaces are public, then:
 - New implementation of DS is possible
 - RFCs
- Open distributed systems are extensible
- What is then an Open Source System? Is an OSS *open?*

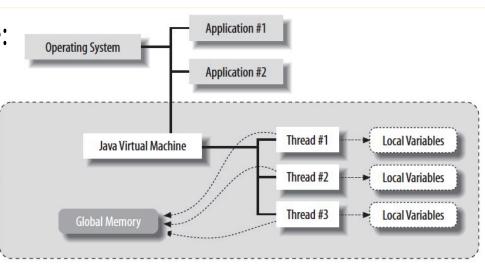
• Of paramount importance today

- Confidentiality
- Integrity
- Availability
- Authentication

Scalability

- System performance will be O(n) if more resources are added
 - n users \rightarrow O(n) servers then, system is scalable

2. Mensaje M descifrado con la clave de sesión y el texto cifrado


+ Failures in DS

- Detecting failures
 - CRC, checksum
- Tolerating failures
- Recovery

- Redundancy
 - Redundant components
 - Two routes to any router
 - DNS
 - Databases
- High availability

- Several clients will attempt to access a resource simultaneously on a server
- If server serves one request at a time:
 - Limits throughput
 - But, will guarantee data consistency
- If server can serve several requests concurrently
 - Improves thorughput, but
 - Concurrent operations (By several threads) on one object *may* interact among themselves and produce inconsistent results
 - Non-deterministic, in general

The separation of components of a DS remains hidden to the user and the programmer

\odot Access transparency

Enables local and remote resources to be accessed using identical operations

 \circ Location transparency

Enables resources to be accessed without knowledge of their physical or network **location** (for example, which building or IP address)

+ Distributed-System Transparencies

The separation of components of a DS remains hidden to the user and the programmer

\circ Concurrency

Enables several processes to operate concurrently using shared resources without interference between them

 \circ Replication

Enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers

+ Distributed-System Transparencies

The separation of components of a DS remains hidden to the user and the programmer

\circ Failure

Enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.

\circ Mobility

Allows the movement of resources and clients within a system without affecting the operation of users or programs

+ Distributed-System Transparencies

The separation of components of a DS remains hidden to the user and the programmer

\circ Performance

Allows the system to be reconfigured to improve performance as loads vary.

$_{\rm O}$ Scaling

Allows the system and applications to expand in scale without change to the system structure or the application algorithms.

+