Additional contents by:©2012 Prof. Peterson and Bruce Davie, MKP, Elsevier, San Francisco,

Introduction to UDP and TCP

End-to-end process mapping, reliable
transmission and end-to-end congestion control

Based on textbook Conceptual Computer Networks © 2013-2024 by José Maria Foces Moran
& José Maria Foces Vivancos



Sliding Window Protocol and Flow Control

Efficient reliable transmission

4-0ct-2019 All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos




==
Sliding Window Algorithm

m  This algorithm breaks down the would-be large data block submitted by an application into sub-blocks.

m  Fach sub-block becomes the payload to a new TCP segment
m  Fach segment is encapsulated into a new IP packet
m  The payload encapsulated into a segment is a block of application data which initial byte is pointed to by the Sequence Number from the segment’s header

m [fasegmentis successfully received at the destination TCP, then the receiver soon will send back a segment which ACK SN will represent that fact
m  Other wise, after a certain algorithmically calculated time elapses, the sender will resend the original segment (ARQ)
m  In-order delivery
m  Reliable delivery
= Flow control

All rights reseved 2024 (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



+
CONTEXT. ATCP connection Firefox (Client) Apache Web Server

N\ Mozilla ‘
L]

Firefox A
aAPACHE
Data
[ Data |
Write byte stream Data Data
Data
Data Read byte stream
Transmit buffer, Receive buffer
Data Transmit buffer Receive buffer
Data
Data

Data

Read a segment

Segment Segment |
Segment Segment §
Interne—t‘j )
B
| Segment | \

20.30.45.56
193.146.101.46

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



==
Example of Shding Window

@ W\’(bewt AfeBOBy&,

" WRece

\

ioq

. '
i@mo - &Y‘\W\N "

| | SEND
St e | S B\’m

WIE]]

i = Petua o
I@M»Aww B= MSS \AA\A bwa,

All rights reserved 2024 © by Jos¢ Maria Foces Moran and José Maria Foces Vivancos

14-Oct-2024



==
TCP Flow Control
BSending Receiving side (S) informs Reeetving
Sending side (C) about its remaining buffer
space

0 1 2 3
m |n this situation CwiIIadaptitspaceof 01234567890123456789012345678901
o ! ' OSSN SRR SR WS SO ST SR SR SR R ST SR SO SR ST ST S SR SR ST ST S SR S S SR S Y
transmission accordingly PRt i M SRR i s MR
m The number of bytes sent within the current Rtt |, s 44y sy sy, SoTuenee e ettt
| Acknowledgment Number |
PR RSP RSNE S SN SO T S SR SR PR ST SR SO SR ST ST S SR SR ST ST SR SR SR ST SR S Y
' ' Data u|a|p|R|S|F|
. TO thlS purpose’ S USEs a TCP header fleld I Offseti Reserved IR]CIS]SIYII[ Window A.WS I
7 ’ ‘ G/K|H|T|N|N
known as AUIVEflL/SE’C/ M//ndOW 5/26 (AWS} to <|0--+-+-+-+-+-+-+—+-+-l-l-l-l-l-l-l-+-+-+-+-+-+-+-+-+-+-+--§--+-+-+-l
i i ini Check Urgent Point
Inform C abOUt Its remalnlng bUﬁer Space 4I._4._4._4._4._4._4._?343‘.:!.[_‘4._+_+..4._+_+_l._+_4._+_+_4.5332_4._21.2_354._4._4._4_1
| Options | Padding |
tmtmtntntetadtat et atatadtat et atadtedat et atat ettt et ettt et et et et atad et
' : i dat
. AWS (Advertlsed WIndOW Slze) may reaCh O 4I-—+-+—+—+-+—+-+—+—+—+—+-+—4-—+-+f+g+-+—+-+—+—+—+—+—+—+-+—+—+—+—+-l

TCP Header Format
m [n that situation C will send zero-data segments

from time to time just for causing S to send an
ACK containing an update of its AWS

. ) ) Based on textbook Conceptual Computer Networks
= Some implementations send ZeroWindowProbes  ©2013-2018 by José Maria Foces Moran

per|0d|ca”y’ every 5 sec & José Maria Foces Vivancos

m Others space ZeroWindowProbes exponentially

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



0

+
TCP Flow Control

| Data |
| offset|

B e e

L T N ek

m—Sending Receiving side (S) informs Reeeiving S

Sending side (C) about its remaining buffer space |

B L e e

m In this situation, C will adapt its pace of
transmission accordingly

1

Source Port |

2 3

01234567890123456789012345678901
B s S s s s s 2 S S R S S S e aht ¥

Destination Port

Yottt adatadtadtatadatatatdtat et atadadat et atatdadatadtatatadat et atadadad

Sequence Number |
S S S S S S N S S ST T S ST T S S S +
Acknowledgment Number |
S A U N S SN N S SR SRS N T SR ST S S Sl e w8

|u|a|P|R[S|F|
Reserved |R|C|S|S|Y|I]
|c/x|m|T|N|N]|

Bl e e et Tl e o T Tt S Tl S T e el R T T T R e S e S e

Checksum

ottt et atatadatadatadtadatd et atadadatadatatadatad ottt

Options

R e el e T el T e e S Tl e el R R R Tl T R R S T S e

data

odndadatad ettt adt et ad ettt adatadadadadatadadadad atadada

Window

Urgent Pointer

| Padding

—————

TCP Header Format

= The number of bytes sent within the current Rit

M| Morzilla

) Firefox

as Advertised Window Size (AWS) to inform C

m To this purpose, S uses a TCP header field known | ., e (

about its remaining buffer space

m AWS (Advertised Window Size) may reach O Transmit buffer

Data

m |n that situation C will send zero-data segments

from time to time just for causing S to send an ACK
containing an update of its AWS

= Some implementations send ZeroWindowProbes Transmit a segment

periodically, every 5 sec
m  Others space ZeroWindowProbes exponentially

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

20.30.45.56

Read byte stream

APACHE

Receive buffer

Data

4 bytes

Free buffer
space =

Internet

:
N

Receive a segment

193.146.101.46

4-0ct-2019



+ TCP sliding window

= W N

Send Sequence Space

SND.UNA SND.NXT SND.UNA

+SND . WND

- old sequence numbers which have been acknowledged
- sequence numbers of unacknowledged data

- sequence numbers allowed for new data transmission
- future sequence numbers which are not yet allowed

transmitter

Window Size

S

© Send Sequence Space from RFC 793 (A verbatim caopy).

advertised by RECEIVER

AWS = 6 ‘
Complete | effective |
Data Stream | _window = 4
11213 /4 /5,6 |7 |!8|9 10|11 |12]13 |14 |15 |16 | 17 |18 |19 |20 |21 |22 |23 |24] 25
| ‘
Bytes | . Bytes written into| Bytes not
sent and Bytes that the send buffer yet written
Bytes could be sent .
acknowledged sent and : that into the
not yet right away ' i )
acknowledged if TCP DON'T fit into send buffer
state allowed the window yet

State variéglg//

snd.una

Retransmission
Queue Size

All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos

14-0ct-2024



When does a TCP transmit?

Nagle's algorithm

4-0ct-2019 All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos




==
Triggering Transmission

m How does TCP decide to

I P \ i
transmit a segment’ Firefox‘

Read byte stream

- TCP Supports d byte stream Write byte stream
abstraction

Receive buffer

m Application programs write
bytes into streams

m |tis up to TCP to decide that
it has enough bytes to send a

segment

20.30.45.

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

|

o —

APACHE

Write byte stream
Read byte stream

Transmit buffer

i o

Receive buffer

Based on textbook Conceptual Computer NetwQRk
2013-2018 by José Maria Foces Moran
José Maria Foces Vivancos

193.146.101.46

4-0ct-2019



==
Triggering Transmission

Assuming that the other end’s window is sufficiently large. TCP transmits the next segment
available in the transmit buffer if any one of these conditions holds true. TCP will always
attempt coalescing bytes from the transmission buffer into full segments (MSS)

a.  The bytes in the send buffer are >= MSS even if no ACK pending

b.  Push operation

c. An ACK that advances snd.una is received

- The segment is transmitted even if the resulting segment length is < MSS

All rights reseved 2024 (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



==
Silly Window Syndrome

m |f TCP makes up arbitrarily small segments, the receiver will receive many of them
and then it will be forced to provide an ACK to each, thereby coaxing the transmitter
to transmit the next (snd.nxt) bunch of bytes of whatever length

m This vicious circle of send small segment/ack squanders network resources
because the encapsulating segments/packets header lengths remain constant (at
least 20 + 20 bytes) despite the payloads being ever tiny: Inefficiency

m Known as the Silly Window Syndrome

m (Can be avoided by:
m Nagle's algorithm (Send side)

m Window control (Receive side)

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



+ .
Nagle’s Algorithm

If no ACK is expected, then transmit any byte size available

Transmit again only when an advancing ACK is received

All rights reseved 2024 (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



+ .
Nagle’s Algorithm

e T
MSS - 10248
<o) PROCEES SEND PROCES

W Vg tecket et

1/ ( ( - |:| g B .
v Wﬂi@l Of oy g UAE 4K

TRAENT -
K @ M?LT@U*V
= ‘L

BUFFER
7} ¢ 1 N | Wl 1o

/
A ;
Atk (TCP SESHEAT _
17 1R - w
]
]
i 1 ®
1 1
1 ]
1 1

All rights reseved 2024 (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



+ .
Nagle's Algorithm

Poeg 4 ww%b m %@-Hmk

6 ®) ®
%{I; %bwc’f ««@(@4 B e

E ///2 / Seckel mtevﬁme W) Vg et ulodoce W) 10 Yeckek wlodeae
TR | TR Tor
W%B\](@anﬁev\émzo lﬂ&'&{&ﬂ%d]j
SN Ti s d0vg %&M&“\{T SN fL s 209 su\ \ | :EEUCPF%%
snd.ona=A snd.una= A ﬁ"cv mxt:m%'@
T T Trév.th‘ =1 (5
and.wit= 4 and. wi= A_[jo’o;' @
A
AR Iz ARR i
P ai
A W .3

All rights reseved 2024 (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



+ .
Nagle's Algorithm

L] Q Ll o Relaft 3xB e

L [ bl
M4 — It ,

W) Vdlltf Yookt wlodsce ) V0007 Vechiek wlodece W) [I Yechetlpdece

=

Ter IR |

=

E i i :
i i

a3 S0 4 st SUY man PENe
T RJFFER

Sn&uun;‘ snd Uun snduus=4015 ch.vnxt
A" 1015 175 2033

TSV{&\M:\OZS ka . Tﬂ‘ .
i"*--!kc\( 01 o

025 3033

[]
s A

4 5 5 —> 6

All rights reseved 2024 (C) by José Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



T Nagle's alg.

] (A
L il
L1 =
W) 1007 decet wlodece

Tcp

mjmdw =3033
Y |

TR ol 4y SIUPHER A Loy mstore
L srengaanent @ AQK i
~»--%-
| Y

Shdua sdatus LQ fok
\gs 2093 Noge s JG) LEN =408 Y / SHLED

pk 3033 L sp-Apsgs. .
r N ® %:40;; (N 10k8 WTW%C\"
P fxcened oS-y ks
A= {0a |

_-,3

All rights reseved 2024 (C) by José'Maria Foces Moran and José Maria Foces Vivancos 14-oct-2024



TCP retransmissions

Adaptive RTO estimation

4-0ct-2019 All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos




[t a segment is lost, it must be retransmitted

m \When should the segment be retransmitted?
m TCP uses two complementary retransmission mechanisms

m 1. Schedule a timer when the first segment is to be sent:

Retransmission TimeOut (RTO) @
~
m After RTO expires: Retransmit all segments from %556 X
Snd.una ' A 193.146;01.46

m /. If 3 ACKs are received for the same sequence number, —
the segment at snd.una was lost and must be Nuxt

retransmitted immediately: 3-DUP

m After 3-DUP: Fast Retransmit _

.
m RTO and 3-DUP are complementary mechanisms N

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran
& José Maria Foces Vivancos

No ack
sent back

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



Retransmissions in TCP

m |f a segment is lost, it will have to be retransmitted

m [f the ACK to a segment is lost, the original segment
would have to be retransmitted, however, if more
segments follow the ACK, their cumulative ACK will
acknowledge the data acknowledged by the missing
ACK thereby rendering the retransmission of the
original data needless.

m Upon transmission of a segment, a Retransmission
limeris started with a countdown value of RTO sec

m RTO must be set so that the stability of Internet is
honored and unnecessary transmissions are avoided
as long as it is possible

m What value should be assigned to RTO
(Retransmission TimeQOut)?

Wait for how long?

Segment retransmitted
Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran

& José Maria Foces Vivancos
All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

%@ s

20.30.45.56
193.146.101.46

A B

Segment

/

Rtt

%@ S

20.30.45.56
193.146.101.46

B

Segment is lost

r

No ack
sent back

4-0ct-2019



+ .
The RTO should be proportional to the
N

Estimated Rt

1. Rtt is sampled when ACK is Recibe : SampleRtt* ——— 20.30.45.36
2. RTO Timer started here N
NA ACK that B
_ ' advances snd.una
EstimatedRtt[n + 1] = & - EstimatedRtt[n] + (1 - @) - SampleRtt[n]
T

RTO = 2-EstimatedRtt

m What value should be
assigned to RTO?

m Proportional to the
connection’s Estimated Rit

Rtt is sampled when ACK is
.
Recibe : SampleRtt \

m How small or big?

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

Next Segment

Next Ack

Based on textbook Conceptual Computer Networks
© 2013-2020 by José Maria Foces Moran
& José Maria Foces Vivancos

25-0ct-2020



+
Then, how is EstimatedRtt computed?

m EstimatedRtt depends on:
m Past values of EstimatedRtt (80-90%) @
m Last RttSample taken (20-10%) S

20.30:45.56 193.146.101.46
m When an Ack is received, a new RttSample A B
is taken
m New EstimatedRitt is computed Segment
Rtt

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran
& José Marija Foces Vivancos Ack

Rtt is measured '\ ,_

here: RttSample

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



+
Then, how is EstimatedRtt computed?

m The recursive formula assigns a higher @
weight to the past history of EstimatedRtt 35%
m Weighted Average a R
m 0=0.8-09
m1-0=0.2-0.1 Segment

m This function behaves like a Low Pass
Digital Filter o

m Will somewhat suppress the highest
samples of Rtt (RttSample)

Rtt is measured \

Based on textbook Conceptual Computer Networks
here: RttSample

© 2013-2018 by José Maria Foces Moran
& José Maria Foces Vivancos

EstimatedRtt[n + 1] = o - EstimatedRtt[n] + (1 - &) - SampleRtt[n]

\ Current value of EstimatedRtt

New value of EstimatedRtt[n + 1]
< RTO = 2-EstimatedRtt[n+1]

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



==
Computing EstimatedRtt: an example

m Assume a TCP connection in a specific time point has a value of EstimatedRtt of 150ms and
that the next three samples of Rtt (SampleRTT in ms) are: 130, 180 and 39,2 ms. What's
the value of SRTT (The next value of EstimatedRtt, also known as Smoothed RTT)? Assume
parameter a = 0,9 and that the original TCP adaptive retransmission algorithm holds.

m a. 150 ms
m b 180 ms
m c. 140 ms

m d.135ms

m e. A value other than those above

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran Aeoct-2019
_oc -

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 8 José Maria Foces Vivancos



==

Computing EstimatedRtt: an example

m SampleRTT in ms = {130, 180, 39.2}

ma=09

m |nitial EstimatedRtt = 150 ms

EstimatedRtt[n + 1] = a - EstimatedRtt[n] + (1 - a) - SampleRtt[n]

m EstimatedRtt[1] = 0.9 - 150 + 0.1 - 130 = 148 ms
m EstimatedRtt[2] = 0.9 - 148 + 0.1 - 180 = 151,2 ms
m EstimatedRtt[3] = 0.9 -151,2+ 0.1 -39.2 =140 ms

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran
& José Maria Foces Vivancos

m Tick answer c. (140 ms)

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



+
Computing RTO = 2 - EstimatedRtt: an example

\

m Estimated Rtt results = 140 ms @
S

RTO = 2 - EstimatedRit <L
1. Rtt is sampled when ACK is Recibe : SampleRtt* “"——-“n_zo'JO"s'ss 133.146.101.46
2. RTO Tim tarted h h
er started here \A ACK that B

. . | advances snd.una
EstimatedRtt[n + 1] = @ - EstimatedRtt[n] + (1 - a) - SampleRtt([n] |

L —
RTO = 2-EstimatedRtt

Next Segment

m RTO=2: - 140ms = 280 ms

Next Ack

Rtt is sampled when ACK is
.
Recibe : SampleRtt \

Based on textbook Conceptual Computer Networks
© 2013-2020 by José Maria Foces Moran
& José Maria Foces Vivancos

, o , o , 14-0ct-2024
All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos



+ . . .
What happens it RTO is not properly estimated?

m RTO is too short

m Timer will fire too soon @
m Transmitter will retransmit a segment S
needlessly 20304556 193.146.101.46
A ted with B
m [f RTO had been long enough, O

T Segment

retransmitting the segment would have
not been necessary

Segment
retransmitted

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran

& José Maria Foces Vivancos
All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019




+ . . .
What happens it RTO is not properly estimated?

m RTO is too long

m Timer will fire too late

m Transmitter will retransmit a segment %@
after an execessively long time 20.3045.56
193.146.101.46
m Receiver will receive the segment too A B ared B
meout co\,\“tdo\N“

late 0

RTO = EstimatedRit[n-+1] T Segment

m Performance will suffer

m [f RTO had been shorter, the receiver ok oot
would have not wasted so much tme || e K
waiting for the missing segment 4’

Segment

Based on textbook Conceptual Computer Netw
© 2013-2018 by José Maria Foces Moran

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 8 José Maria Foces Vivancos 4-0ct-2019




What’s the Rtt when retransmissions occur?

| What is the right RttSample? i

m Recall: RTO = 2 - EstimatedRit ! %@

20.30.45.56
193.146.101.46

0 A Y tarted W B
n

Based on textbook Conceptual Compu tworks
© 2013-2018 by José Maria Foces Moran
& José Maria Foces Vivancos

comind

ACKS

SampleRtt?

Segment
retransmitted

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

4-0ct-2019




What’s the Rtt when retransmissions occur?

m Recall: RTO = 2 - EstimatedRtt !

SampleRtt?

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

3

20.30.45.56

A

| What is the right RttSample? b

193.146.101.46
ith
fimer cfarted Wi B
imeott nds countdolt
10 secl
Segment
Ack lost

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran
& José Maria Foces Vivancos

Segment retransmitted

4-0ct-2019




T Karn/Partridge Algorithm

Start Timer - -« - - -« w o - =

m Do not sample RTT when
retransmitting

Restart Timer - - - - - . .

m Simply, double timeout
(TO) after each
retransmission;

m RTO[n+1] = 2 - RTO[n]

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos

@ ‘What is the right RttSample?

A ' DON’T SAMPLE! |
_D -
Segment
Ack lost
Xo—
o

Retransmitted segment

Ac

Based on textbook Conceptual Computer Networks
© 2015-2020 by José Maria Foces Moran
& José Maria Foces Vivancos

25-0ct-2020



+ . .
Karn/Partridge Algorithm

m An ACK represents the correct receipt of a past segment

m |t does not mean “this transmission was correct’

Based on textbook Conceptual Computer Networks
© 2013-2018 by José Maria Foces Moran
& José Maria Foces Vivancos

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



Karn/Partridge Algorithm: complications

m KP does not consider the variance of SampleRtt

m [f variance is low, then EstimatedRtt can be better trusted
m And RTO can be equated to EstimatedRtt, up front
m RTO = EstimatedRtt

m However, if variance is high:
m RTO = f(EstimatedRtt)

© Morgan Kauffmann Publ. Co Larry
Peterson and Bruce Davie, “Computer
Networks”

All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos 4-0ct-2019



+
Jacobson/Karels Algorithm: Account for variance

in SampleRt

m SampleRTT is same as before

m Difference = SampleRTT — EstimatedRTT
m EstimatedRTT = EstimatedRTT + ( X Difference)
m Deviation = Deviation + (| Difference | — Deviation)

m TimeOut = u X EstimatedRTT + X Deviation

m where based on experience, W is typically set to 1 and is set to 4. Thus, when the
variance is small, TimeQOut is close to EstimatedRTT; a large variance causes the deviation
term to dominate the calculation.

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-0ct-2019



==
Protecting against Wraparound

m SequenceNum: 32 bits long

m AdvertisedWindow: 16 bits long

m TCP has satisfied the requirement of the sliding window algorithm that the sequence
number space be twice as big as the window size

= 232 >> 2 X 216

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-0ct-2019



==
Protecting against Wraparound

m 32-bit sequence number space
- The sequence number used on a given connection might wraparound
- A byte with sequence number x could be sent at one time

Later, a second byte with the same sequence number x could be sent

m Packets cannot survive in the Internet for longer than the MSL (Max. Segment
Lifetime)
MSL is set to 120 sec

- We need to make sure that the sequence number does not wrap around within a 120-
second period of time

Depends on how fast data can be transmitted over the Internet

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-0ct-2019



==
Protecting against Wraparound

Bandwidth Time until Wraparound
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes '

13 (45 Mbps) 13 minutes ®

Fast Ethernet (100 Mbps) | 6 minutes
OC-3 (155 Mbps) 4 minutes
0C-12 (622 Mbps) 55 seconds
0C-48 (2.5 Gbps) 14 seconds

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-0ct-2019



==
Keeping the Pipe Full

m 16-bit AdvertisedWindow field must be big enough to allow the sender to keep the
pipe full

m (learly the receiver is free not to open the window as large as the
AdvertisedWindow field allows

m |f the receiver has enough buffer space

m The window needs to be opened far enough
to allow a full delay X bandwidth product’s worth of data

m Assuming an RTT of 100 ms

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-0ct-2019



==
Keeping the Pipe Full

Bandwidth Delay X Bandwidth Product
T1 (1.5 Mbps) 18 KB

Ethernet (10 Mbps) 122 KB

T3 (45 Mbps) 549 KB

Fast Ethernet (100 Mbps) | 1.2 MB

OC-3 (155 Mbps) 1.8 MB

0C-12 (622 Mbps) 7.4 MB

0C-48 (2.5 Gbps) 29.6 MB

Required window size for 100-ms RTT

© Morgan Kauffmann Publ. Co Larry Peterson and %luce Davie, “Computer Networks” 4-0ct-2019



The basics of Internet congestion

When excessive network delay compromises service

© 2016 José Maria Foces Moran




+
Basic structure of an IP Router

m At this moment, #he output link, receives traffic from three Jinput links

m The output link, when demand is high, queues packets in a buffer
m [ncreases the delay undergone by each packet
m [n the limit, when the link is congested, it begins to drop packets (Packets get lost)

IP router

output link queue FULL u
HEEREREEN -

, 14-oct-2024
All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos



T . 9
Queue length: Little's Law

If tis sufficiently large:

u N -_— A.Ta

= The average queue length is given by the product of average packet rate and the average residence time

= The interarrival time is given a by a Poisson probability distribution A(t) = P(interravival time <= 1)

= Applies to a variety of queue disciplines, not only FIFO

= Input probability distribution

i

K(t)
| T T T T | Sistema de comunicaciones
‘ Al A2 A3 Ai con buffer
0 Proceso
aleatorio
A(t) S
(LLegadas)

All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos

DI

T T T | .
D2 D3 Di |
Proceso
aleatorio

D(t)

(Salidas)

14-0ct-2024



+
Power curve of a netowrk

m As the offered load increases, the ratio A
Throughput/delay also increases _
= Offered load éf
= Achieved throughput/delay (T/d) g
m Atime point comes when the T/d flats and the begins E
to decrease as offered load keeps increasing ootinal T
load

m This is due to the increasing delay at each router

© Morgan-Kaufmann 2012, Prof. L. Peterson and Bruce Davie

, 14-oct-2024
All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos



Bottleneck link at an IP router

m The bottleneck link limits the maximum number of segments present in the network

m Product 2BD: B is the bandwidth of the bottleneck link and 2D is the Rtt

longer inter
segment
distance

w3 Q0 O O O

short inter longer inter
segment segment

distance distance

hOOoooo cupu queve. (-1
o Jn————»

Bottleneck

5 Link

Sender Receiver

(C) 2016 José Maria Foces Moran




TCP, congestion control

: 14-0ct-2024
All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos




==

How TCP discovers the end-to-end capacity of a

TCP connection

m TCP needs to discover how many packets/sec can be injected into the network,

safely

m With a limited packet loss

longer inter
segment
distance

s}

short inter longer inter
segment segment
distance distance

output queue |:| I:l |:|
[[ [ ] =

Bottleneck ...
Link -
Sender JeEe Receiver
Excéssive Dropped
traffic R
offered

All rights reseved (C) 2020-2024 by José Maria Foces Moran and José Maria Foces Vivancos

14-0ct-2024



AIMD: Additive Increase, Multiplicative Decrease

All rights reseved (C) 2020-2024 by José Marfa Foces Moran and José Marfa Foces Vivancos 14-0ct-2024

m TCP needs to discover how many packets/sec can be injected into the network, safely
m Without packet loss
m The effective TCP’s transmit window becomes =MIN (CongestionWindow, AdvWindow)

m (W = CongestionWindow

TCP Reno
TCP Taflpe Review
X
,19”
\ e
window v Oy window
size N “n, size
B S o

© Prof. Levis, Stanford University time

44, Stanford University 3



==
How discovers network capacity

m  Slow Start (S5)

m  Probe for network capacity by growing CW (Congestion window)
CW =2 * (W each Rt

= [nitially, CW = 1

m 3-DUP causes transition to CA (Congestion Avoidance) with CW = SSthrsh / 2

m [0 (Timeout) causes SS to start again

m  Linux implements TCP Reno and CUBIC congetion control

Source Destination

TCP Reno

window
size

© Prof. Levis, Stanford University
© Prof. Larry Peterson and Bruce
Davie

time

(C) 2016 José Maria Foces Moran



Reno, Fast Retransmit and Fast Recovery

m Fast Retransmit:

m Upon a 3-DUP the transmitter will retransmit the missing segment, only

m Fast Recovery

m Also, artificially increase (W = CW + 3 to compensate for the 3-DUP that didn’t advance

LastByteAcked and which, therefore, could not be used to spur the transmitter to transmit 3 new
segments

m Use the remaining, upcoming ACKS to keep the transmission pace
m NO Slow Start in Reno upon 3-DUP

(C) 2016 José Maria Foces Moran



(C) 2015 José Maria Foces Moran




4-0ct-2019 All rights reseved (C) by José Maria Foces Moran and José Maria Foces Vivancos




