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Sliding Window Protocol and Flow Control
Efficient reliable transmission
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+
Sliding Window Algorithm

n This algorithm breaks down the would-be large data block submitted by an application into sub-blocks.

n Each sub-block becomes the payload to a new TCP segment

n Each segment is encapsulated into a new IP packet

n The payload encapsulated into a segment is a block of application data which initial byte is pointed to by the Sequence Number from the segment’s header

n If a segment is successfully received at the destination TCP, then the receiver soon will send back a segment which ACK SN will represent that fact

n Other wise, after a certain algorithmically calculated time elapses, the sender will resend the original segment (ARQ)

n In-order delivery
n Reliable delivery

n Flow control
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CONTEXT. A TCP connection Firefox (Client) Apache Web Server
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+
Example of  Sliding Window
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TCP Flow Control
n Sending Receiving side (S) informs Receiving

Sending side (C) about its remaining buffer 
space

n In this situation, C will adapt its pace of  
transmission accordingly
n The number of  bytes sent within the current Rtt

n To this purpose, S uses a TCP header field 
known as Advertised Window Size (AWS) to 
inform C about its remaining buffer space

n AWS (Advertised Window Size) may reach 0

n In that situation C will send zero-data segments 
from time to time just for causing S to send an 
ACK containing an update of  its AWS
n Some implementations send ZeroWindowProbes

periodically, every 5 sec
n Others space ZeroWindowProbes exponentially

AWS

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos
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TCP Flow Control

n Sending Receiving side (S) informs Receiving
Sending side (C) about its remaining buffer space

n In this situation, C will adapt its pace of  
transmission accordingly
n The number of  bytes sent within the current Rtt

n To this purpose, S uses a TCP header field known 
as Advertised Window Size (AWS) to inform C 
about its remaining buffer space

n AWS (Advertised Window Size) may reach 0

n In that situation C will send zero-data segments 
from time to time just for causing S to send an ACK 
containing an update of  its AWS
n Some implementations send ZeroWindowProbes

periodically, every 5 sec
n Others space ZeroWindowProbes exponentially
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+ TCP sliding window
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+
When does a TCP transmit?
Nagle’s algorithm
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+
Triggering Transmission

n How does TCP decide to 
transmit a segment?
n TCP supports a byte stream 

abstraction

n Application programs write 
bytes into streams

n It is up to TCP to decide that 
it has enough bytes to send a 
segment
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+
Triggering Transmission

Assuming that the other end’s window is sufficiently large. TCP transmits the next segment 
available in the transmit buffer if  any one of  these conditions holds true. TCP will always 
attempt coalescing bytes from the transmission buffer into full segments (MSS)

a. The bytes in the send buffer are >= MSS even if  no ACK pending

b. Push operation

c. An ACK that advances snd.una is received 

- The segment is transmitted even if  the resulting segment length is < MSS

14-oct-2024
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+
Silly Window Syndrome

n If  TCP makes up arbitrarily small segments, the receiver will receive many of  them 
and then it will be forced to provide an ACK to each, thereby coaxing the transmitter 
to transmit the next (snd.nxt) bunch of  bytes of  whatever length

n This vicious circle of  send small segment/ack squanders network resources 
because the encapsulating segments/packets header lengths remain constant (at 
least 20 + 20 bytes) despite the payloads being ever tiny: Inefficiency

n Known as the Silly Window Syndrome

n Can be avoided by:
n Nagle’s algorithm (Send side)

n Window control (Receive side)

14-oct-2024
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Nagle’s Algorithm

- If  no ACK is expected, then transmit any byte size available

- Transmit again only when an advancing ACK is received

13
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Nagle’s Algorithm
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Nagle’s Algorithm
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Nagle’s Algorithm
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+Nagle’s alg.
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TCP retransmissions
Adaptive RTO estimation
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If  a segment is lost, it must be retransmitted

n When should the segment be retransmitted?

n TCP uses two complementary retransmission mechanisms

n 1. Schedule a timer when the first segment is to be sent: 
Retransmission TimeOut (RTO)
n After RTO expires: Retransmit all segments from 

snd.una

n 2. If  3 ACKs are received for the same sequence number, 
the segment at snd.una was lost and must be 
retransmitted immediately: 3-DUP

n After 3-DUP: Fast Retransmit of  only the lost segment

n RTO and 3-DUP are complementary mechanisms

A B

Segment is lost
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Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
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+
Retransmissions in TCP

n If  a segment is lost, it will have to be retransmitted

n If  the ACK to a segment is lost, the original segment 
would have to be retransmitted, however, if  more 
segments follow the ACK, their cumulative ACK will 
acknowledge the data acknowledged by the missing 
ACK thereby rendering the retransmission of  the 
original data needless.

n Upon transmission of  a segment, a Retransmission 
Timer is started with a countdown value of  RTO sec

n RTO must be set so that the stability of  Internet is 
honored and unnecessary transmissions are avoided 
as long as it is possible
n What value should be assigned to RTO 

(Retransmission TimeOut)?

A B

Segment

Rtt

193.146.101.46
20.30.45.56

Ack

Correct transmission + Ack

A B

Segment is lost

193.146.101.46
20.30.45.56

Lost segment: no Ack

X

No ack
sent back

Segment retransmitted
Wait for how long?

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos

20

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos



+
The RTO should be proportional to the 
Estimated Rtt

n What value should be 
assigned to RTO?

n Proportional to the 
connection’s Estimated Rtt

n How small or big?

Based on textbook Conceptual Computer Networks 
© 2013-2020 by José María Foces Morán 
& José María Foces Vivancos
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Then, how is EstimatedRtt computed?

n EstimatedRtt depends on:

n Past values of  EstimatedRtt (80-90%)

n Last RttSample taken (20-10%)

n When an Ack is received, a new RttSample
is taken

n New EstimatedRtt is computed

A B
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+
Then, how is EstimatedRtt computed?

n The recursive formula assigns a higher 
weight to the past history of  EstimatedRtt

n Weighted Average

n α= 0.8 – 0.9

n 1 – α= 0.2 – 0.1

n This function behaves like a Low Pass 
Digital Filter

n Will somewhat suppress the highest 
samples of  Rtt (RttSample)

A B
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Computing EstimatedRtt: an example

n Assume a TCP connection in a specific time point has a value of  EstimatedRtt of  150ms and 
that the next three samples of  Rtt (SampleRTT in ms) are: 130, 180 and 39,2 ms. What’s 
the value of  SRTT (The next value of  EstimatedRtt, also known as Smoothed RTT)? Assume 
parameter α = 0,9 and that the original TCP adaptive retransmission algorithm holds.

n a. 150 ms

n b. 180 ms

n c. 140 ms

n d. 135 ms

n e. A value other than those above

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos 4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos
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+
Computing EstimatedRtt: an example

n SampleRTT in ms = {130, 180, 39.2}

n α = 0,9

n Initial EstimatedRtt = 150 ms

EstimatedRtt[n + 1] = α · EstimatedRtt[n]  + (1 - α) · SampleRtt[n] 

n EstimatedRtt[1] = 0.9 · 150 + 0.1 · 130 = 148 ms

n EstimatedRtt[2] = 0.9 · 148 + 0.1 · 180 = 151,2 ms

n EstimatedRtt[3] = 0.9 · 151,2 + 0.1 · 39.2 ≈ 140 ms

n Tick answer c. (140 ms)

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos
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+
Computing RTO = 2 · EstimatedRtt: an example

n Estimated Rtt results = 140 ms
RTO = 2 · EstimatedRtt

n RTO = 2 · 140ms = 280 ms

Based on textbook Conceptual Computer Networks 
© 2013-2020 by José María Foces Morán 
& José María Foces Vivancos
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What happens if  RTO is not properly estimated?

n RTO is too short

n Timer will fire too soon

n Transmitter will retransmit a segment 
needlessly

n If  RTO had been long enough, 
retransmitting the segment would have 
not been necessary

A B

Segment

193.146.101.46
20.30.45.56

Ack 

RTO too short

Segment
retransmitted

Timeout timer started with 

RTO seconds countdown

RTO

Tim
eout fir

es t
oo ea

rly
Ack is coming

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

27



+
What happens if  RTO is not properly estimated?

n RTO is too long

n Timer will fire too late

n Transmitter will retransmit a segment 
after an execessively long time

n Receiver will receive the segment too 
late

n Performance will suffer

n If  RTO had been shorter, the receiver 
would have not wasted so much time 
waiting for the missing segment

A B

Segment

193.146.101.46
20.30.45.56

Ack lost 

RTO too long

Segment

Timeout timer started with 

RTO seconds countdown

RTO = EstimatedRtt[n+1]

Timeout timer fires too late

Wasted time

X

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

28



+
What’s the Rtt when retransmissions occur?

n PROBLEM: In this situation, how can 
EstimatedRtt be calculated?

n Recall: RTO = 2 · EstimatedRtt !

n Solution: Karn/Partridge algorithm A B

Segment
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+ Karn/Partridge Algorithm

n Do not sample RTT when 
retransmitting 

n Simply, double timeout 
(TO) after each 
retransmission:

n RTO[n+1] = 2 · RTO[n] 

Based on textbook Conceptual Computer Networks 
© 2015-2020 by José María Foces Morán 
& José María Foces Vivancos
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+
Karn/Partridge Algorithm

n An ACK represents the correct receipt of  a past segment

n It does not mean “this transmission was correct”

Based on textbook Conceptual Computer Networks 
© 2013-2018 by José María Foces Morán 
& José María Foces Vivancos
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+
Karn/Partridge Algorithm: complications

n KP does not consider the variance of  SampleRtt

n If  variance is low, then EstimatedRtt can be better trusted
n And RTO can be equated to EstimatedRtt, up front

n RTO ≈ EstimatedRtt

n However, if  variance is high:
n RTO != f(EstimatedRtt)

4-oct-2019All rights reseved (C) by José María Foces Morán and José María Foces Vivancos

33

© Morgan Kauffmann Publ. Co Larry 
Peterson and Bruce Davie, “Computer 
Networks”



+
Jacobson/Karels Algorithm: Account for variance 
in SampleRtt

n SampleRTT is same as before

n Difference = SampleRTT − EstimatedRTT

n EstimatedRTT = EstimatedRTT + ( × Difference)

n Deviation = Deviation + (|Difference| − Deviation)

n TimeOut = μ × EstimatedRTT +  × Deviation
n where based on experience, μ is typically set to 1 and  is set to 4. Thus, when the 

variance is small, TimeOut is close to EstimatedRTT; a large variance causes the deviation 
term to dominate the calculation.

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019
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+
Protecting against Wraparound

n SequenceNum: 32 bits long

n AdvertisedWindow: 16 bits long
n TCP has satisfied the requirement of  the sliding window algorithm that the sequence 

number space be twice as big as the window size 

n 232 >> 2 × 216

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019
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+
Protecting against Wraparound

n 32-bit sequence number space

• The sequence number used on a given connection might wraparound 

• A byte with sequence number x could be sent at one time

• Later, a second byte with the same sequence number x could be sent

n Packets cannot survive in the Internet for longer than the MSL (Max. Segment 
Lifetime)
• MSL is set to 120 sec

• We need to make sure that the sequence number does not wrap around within a 120-
second period of  time

• Depends on how fast data can be transmitted over the Internet

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019
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Protecting against Wraparound

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019
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Keeping the Pipe Full

n 16-bit AdvertisedWindow field must be big enough to allow the sender to keep the 
pipe full

n Clearly the receiver is free not to open the window as large as the 
AdvertisedWindow field allows

n If  the receiver has enough buffer space
n The window needs to be opened far enough

to allow a full delay × bandwidth product’s worth of  data
n Assuming an RTT of  100 ms

© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019
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Keeping the Pipe Full

Required window size for 100-ms RTT
© Morgan Kauffmann Publ. Co Larry Peterson and Bruce Davie, “Computer Networks” 4-oct-2019
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The basics of  Internet congestion
When excessive network delay compromises service

© 2016 José María Foces Morán
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Basic structure of  an IP Router

n At this moment, the output link, receives traffic from three input links

n The output link, when demand is high, queues packets in a buffer
n Increases the delay undergone by each packet
n In the limit, when the link is congested, it begins to drop packets (Packets get lost)

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
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+
Queue length: Little’s Law

If  t is sufficiently large:

§ N =  λ·Ta

§ The average queue length is given by the product of  average packet rate and the average residence time

§ The interarrival time is given a by a Poisson probability distribution A(t) = P(interravival time <= t)

§ Applies to a variety of  queue disciplines, not only FIFO

§ Input probability distribution

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
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Power curve of  a netowrk

n As the offered load increases, the ratio 

Throughput/delay also increases

n Offered load

n Achieved throughput/delay (T/d)

n A time point comes when the T/d flats and the begins 

to decrease as offered load keeps increasing

n This is due to the increasing delay at each router
© Morgan-Kaufmann 2012, Prof. L. Peterson and Bruce Davie
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+
Bottleneck link at an IP router

n The bottleneck link limits the maximum number of  segments present in the network

n Product 2BD: B is the bandwidth of  the bottleneck link and 2D is the Rtt

(C) 2016 José María Foces Morán



+
TCP, congestion control
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How TCP discovers the end-to-end capacity of  a 
TCP connection

n TCP needs to discover how many packets/sec can be injected into the network, 
safely

n With a limited packet loss

All rights reseved (C) 2020-2024 by José María Foces Morán and José María Foces Vivancos
14-oct-2024



+
AIMD: Additive Increase, Multiplicative Decrease

n TCP needs to discover how many packets/sec can be injected into the network, safely

n Without packet loss

n The effective TCP’s transmit window becomes =MIN (CongestionWindow, AdvWindow)

n CW = CongestionWindow

© Prof. Levis, Stanford University
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How discovers network capacity
n Slow Start (SS)

n Probe for network capacity by growing CW (Congestion window)
CW = 2 * CW each Rtt

n Initially, CW = 1

n 3-DUP causes transition to CA (Congestion Avoidance) with CW  = SSthrsh / 2

n TO (Timeout) causes SS to start again

n Linux implements TCP Reno and CUBIC congetion control

© Prof. Levis, Stanford University
© Prof. Larry Peterson and Bruce 
Davie

(C) 2016 José María Foces Morán
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Reno, Fast Retransmit and Fast Recovery

n Fast Retransmit:

n Upon a 3-DUP the transmitter will retransmit the missing segment, only

n Fast Recovery
n Also, artificially increase CW = CW + 3 to compensate for the 3-DUP that didn’t advance 

LastByteAcked and which, therefore, could not be used to spur the transmitter to transmit 3 new 
segments

n Use the remaining, upcoming ACKS to keep the transmission pace

n NO Slow Start in Reno upon 3-DUP

(C) 2016 José María Foces Morán
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