
V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

1	

Universidad de León
School of Industrial, Computer and Aerospace Engineering
Course on Distributed Systems

1.0. Example about TCP RTO Timer when no packet loss occurs

This example illustrates a successful transmission of several segments
accomplished by sender host Ht to receiver host Hr. None of the sent segments is
dropped, consequently, neither the RTO timer fires nor the 3-DUP mechanism is
ever activated.

Host Ht requests a TCP connection with host Hr; the relevant handshake begins at
time index 0. At time index 1, the handshake has finished and data interchanges
can begin from either side; we’ll assume that data transmission only takes place
from host Ht to Host Hr so as to keep the example simple and at the same time
significant. At this time, right after initializing the connection, TCP (On the Ht to
Hr side) is in the Slow Start state, assuming that the application at Ht has plenty of
bytes to send across the connection, consequently, host Ht sends a very small
number of MSS-sized segments, or a single MSS-sized segment, i.e. in the first
round trip.

In the handshake, Ht and Hr have set their respective MSS to 1000 bytes, which is
such an unusual value for MSS, however, we have chosen it because it’s
straightforward to calculate with at the same time helping us understand that 1000
is functionally acceptable as MSS. The first segment has SN = 1; again, keeping the
examples simple leads us to use relative Sequence Numbers, like tcpdump and
Wireshark do. The segment sent at index 1 has a length of 1000, in conformity with
the MSS announced by Hr in the handshake. Segments like the latter which size is
the same as the MSS are conventionally known as full segments. The range of
sequence numbers covered by this segment is: [SN, (SN + Len) – 1] = [1, (1 + 1000) -
1] = [1, 1000]. This segment, shortly after it is received by host Hr, causes it to send
back an ACK for it; since the last byte covered by [1, 1000] is 1000, the ACK must
have an ACK SN of 1001, following the TCP ACK semantics of “next in-order byte
expected”.

At index 1, right before the first segment is sent, an RTO (Retransmission TimeOut)
timer is created and started so that it protects the transmission of the segment. The
timer is free running at this time. Also, at index 1, the TCP transmitter snd.una
state variable is set to 1 (The first unacknowledged byte)1.

	
1	The	nomenclature	used	for	TCP	stack	transmitter	and	receiver	state	variables	follows	the	conventions	
set	in	RFC	793	under	heading	3.3	“Sequence	Numbers”.	The	name	of	the	snd.una	variable	in	the	
Textbook	by	Peterson	and	Davie	is	LastByteAcked.	

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

2	

Figure 0.1. Send Sequence Space from RFC 793 (A verbatim copy thereof).

ACK 1001 is received at time index 2; since it has advanced snd.una from 1 to 1001
(It’s an ACK that advances 1000 bytes forward in the stream. Technically, it is referred to
as an ACK that advances) the RTO timer is restarted so that the ensuing segment to
be transmitted is protected. Sender host Ht‘s TCP is still in the Slow Start state,
consequently, it will transmit a maximum of twice the number of bytes that were
acknowledged in the received, advancing ACK which acked 1000 bytes (A full
MSS-sized segment) so that it can proceed to transmitting the next 2 x MSS = 2 x
1000 = 2000 bytes; since the MSS=1000, it can transmit a total of 2 full segments
(One full MSS, each). With RTO timer started at 2, transmission proceeds with two
segments which respectively have sequence numbers SN=1001 and SN=2001
respectively and both have a length of 1000 bytes (Again, each a full MSS).

Linux TCP receivers avail of two acking modes: QuickAck and DelAck. In
QuickAck mode, Linux TCP returns an ACK immediately, right after it receives
some types of TCP segments, for example: a segment that fills a receive buffer gap,
a segment which SN is not contiguous to the latest received in-order segment.
There exist other kinds of TCP segments that when received cause the receiver to
send back a QuickAck. The default Linux acking mode is DelAck, however. In
DelAck mode, TCP will wait an additional 200 ms after receiving a TCP segment.
That time, 200 ms is known as the DelAck timer, and it allows TCP to wait for a
would-be next in-order segment, so that, if that next segment actually arrives, TCP
has sent a single ACK for the two in-order segments, thereby saving some network
bandwidth. The DelAck mode in Linux can be configured to wait for up a specific
number of milliseconds for the next in-order segment, thereby achieving even
greater bandwidth savings. The DelAck timer can be set to 10 ms with the
following command:

echo 10 > /proc/sys/net/ipv4/tcp_delack_min

The default acking mode when initializing a connection in the SS (Slow Start) state
is QuickAck which will allow TCP to determine the congestion window quickly.

However, despite the default acking mode is QuickAck in the SS state, in this example we

will assume DelAck as the used acking mode. Keep this on mind!

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

3	

Continuing with the chronogram, assuming that the two back-to-back segments
transmitted in time index 2 make it to the receiver, it reacts by sending a single
Delayed Acknowledgement (DelAck) which cumulatively and positively ACKs the
latest two received, back-to-back segments. Hr generates a single DelAck because
the two received segments have consecutive sequence numbers and the second one
arrived at Hr before the delack timer elapsed (This timer is started by the receiver
when it receives the first segment and may have a length of time of about 200ms).

At 4, the DelAck arrives, and since it moves snd.una to 3001 (It is an “Ack that
advances”, the advancement being of a length of 2000 bytes from the former
snd.una of 1001, i.e. equivalent to two full segments assuming the example’s MSS
of 1000 bytes). Reception of the advancing ACK causes the RTO timer to be
restarted. Since the ACK advanced snd.una by two MSS and being in the SS state
(Slow Start), the transmitter can send at most 2 x 2 received MSS = 4 full segments.
Right after time index 4, the transmitter proceeds to transmitting 4 segments, the
first of which carries SN = 3001. This segment is the next to be transmitted within
the current window: Note SNs through 3000 have already been transmitted,
consequently it’s SN=3001 the next. Notice it’s only the received advancing Acks
that spur the transmitter to continue the transmission of the segments that
comprise the current transmission window (Pointed to by send buffer variable
snd.nxt and which end is at is snd.una + snd.win). In the present example the
transmission window size (snd.win), in TCP’s SS state is twice the number of bytes
cumulatively Acked (Those for which a corresponding advancing Ack has been
received).

Shortly after time index 4, the TCP at Ht initiated the transmission of the 4
segments, one by one which were successfully handed to receiver Hr. The first two
of these segments arrived at Hr within less than the delack timer seconds, which
made Hr to send back a single ACK for the two, viz. a delayed ACK or delack. The
burst of 2 further packets arriving after the latter two also made Hr to send back a
delack. The first of the latter two ACKs (A delack in this case) caused the RTO
timer to be restarted; by contrast, the second ACK did not cause an RTO restart but
an RTO timer stop because no more data are pending to be transmitted in Ht‘s
send buffer.

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

4	

Figure 1. 3-way handshake and ensuing data transfers.

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

5	

2.0. Example about TCP RTO Timer-based retransmission where one packet gets
dropped

Here, we seek to illustrate the retransmission made by TCP when a packet is lost.
The retransmission based on 3-DUP is what we illustrated in the past example.
Now, we are interested in an example where a packet is lost, but, the number of
packets transmitted after it is not sufficient to cause a 3-DUP. The TCP mechanism
that ensures that the lost packet is retransmitted is based on the RTO timer.

In this example (See fig. 2), the 3-way handshake from the past example (Fig. 1) is
reused and also, we assume that the transmission of the first segment (SN 1) and
its ACK (1001) have both taken place. Then, the example of TCP transmission
continues with the transmitter (Ht) sending two segments, the first having SN 1001
and the one following it having SN 2001. The latter of the two segments is lost
amid its the path to its destination host Hr (See time index 4 in fig. 2). Like in the
past example, segment with SN 1001 is successfully delivered at the receiver which
starts the DelAck timer (≈ 200 ms) even though TCP is in the SS state and Linux
TCP never applies the DelAck timer when TCP is in the SS state.

Observe at time index 6 that we assume that the DelAck timer fires before another
segment carrying data arrives that carries an SN contiguous to 1001 + 1000 (The
MSS). Consequently, TCP at Hr sends back an ACK (SN 2001) for the data received
in the preceding segment which SN=1001 (Recall that all the segment lengths
considered in this example are of MSS bytes in length, or 1000 bytes in this case, or
a full segment). At time index 7, the ACK 2001 arrives at Ht; as TCP prescribes, that
ACK that advances snd.una causes the RTO timer to restart (It is not stopped
because further segments are waiting to be sent on the transmit buffer, at the
present time). The TCP transmitter’s state, after receiving the ACK is:

 snd.una = 2001
 snd.nxt = 3001

At time index 8, the sending TCP (Ht) sends a number of bytes that is twice as big
as the advance of snd.una produced by the preceding received ACK (snd.una was
advanced from 1001 to 2001, an advance worth 1000 bytes, or a full MSS). The
equivalent to 2 x MSS bytes can be sent now. Variable snd.nxt points to 3001, at
this time, after the transmission of SN 1001 (Len 1000) and SN 2001 (Len 1000) in
the preceding Rtt; accordingly, segments with SN=3001 and SN=4001 are
transmitted.

At time index 9 the two full segments are received by Hr. Observe that the first
segment (SN 3001; Len 1000) is an out-of-order segment according to the state of the
receiving TCP; that is so because the maximum level of progress in Hr’s buildup of
the in-order stream of data received from Hr is at 2000 at this moment. In other

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

6	

words, the next expected in-order byte at Hr is 2001, not at 3001. The stipulated
behavior of a TCP receiver that receives an out-of-order segment consists of sending
back an immediate ack, or QuickAck (A single ACK sent immediately, which, as
usual carries an ACK SN representing the receiver’s current value of rcv.nxt2).
Following the TCP prescription just explained, the delivery of a segment carrying
data from SN=4001 at Hr causes that host to send back a QuickAck (See time index
10) again carrying an ACK SN of 2001 (Its current value of rcv.nxt), as usual in
TCP, representing the maximum progress made by the receiver in building the
stream of in-order data received from the sender.

The two QuickAcks are received by Ht; observe that these two ACKs are duplicates
of the ACK sent at time index 6, i.e., two duplicates of it. Not 3-DUP! Conceptually, 2
duplicates won’t attain retransmission of the segment at snd.una as 3-DUP should
do3. Faithfully complying with the specifications from RFC 5681 requires that 3
duplicates of an ACK segment be received for the sender to retransmit the segment
at snd.una. The three duplicates must have the same ACK SN and the same AWS
as the original ACK and it should carry no payload data. In summary, no 3-DUP
retransmission will be started at Ht.

For completeness, we should observe that the two last ACKs received with
SN=2001 don’t advance, therefore, neither can be used by Ht for sending further
segments should there be any in the transmission buffer of Ht (Which is not the
case); ultimately, the Ht-to-Hr side of the TCP connection becomes idle:

- No data segments are pending to be transmitted in the transmission

buffer of Ht
- No ACKs are pending to be sent back from Hr
- The connection is idle.

Observe further that there are indeed pending ACKs at Hr: all of ACK SN=3001,
SN=4001 and SN=5001, or an accumulated ACK worth all of them. Do you wonder
how this idling of the connection can be broken down, now? Observe that there is
still one segment that must be retransmitted after being lost. How is this
connection work finished?

The key is in the received non-advancing ACKs. Non-advancing ACKs won’t
cause the RTO timer to restart. Check Fig. 2 where you’ll readily identify only one
restart of the RTO Timer (Time index 7); after that point in time, the RTO timer will
forever free run down until the countdown elapses at time index 11. At that point

	
2	rcv.nxt	on	the	receive	side	is	equivalent	to	Peterson	and	Davie’s	NextByteExpected.	Receiver	
variable	rcv.nxt	points	to	the	next	in-order	byte	expected.	Whenever	the	receiver	sends	back	an	ACK,	
the	ACK	SN	encapsulated	is	a	copy	of	the	value	of	variable	rcv.nxt.		
3	Actually,	in	a	number	of	versions	of	the	Linux	TCP/IP	stack,	2	duplicates,	when	received	by	the	sender	
spur	the	retransmission	of	the	segment	at	snd.una.	

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

7	

in time the RTO timer fires, causing the connection to leave the idle state by having
the segment pointed by snd.una (2001) retransmitted (See time index 12) and all of
the ensuing segments up to, and not including snd.nxt.

Resent segment having SN 2001 arrives at the receiver at time index 13. That
segment fills the gap created when that segment was dropped, the first time it was
transmitted. Hr reacts by sending back a quickack updating the max level of stream
completion, which at this time is at 5001 -note that segments with SN 3001 and 4001
were successfully received by Hr and were as well stored in Hr’s receive buffer,
hence the sudden jump in the ACK SN sent back from 3001 all the way through
5001.

On the sender side, the RTO timer is stopped after ACK 5001 is received.
Transmitter variables snd.una and snd.nxt are equal, which means the
transmission buffer is empty at this time, consequently no RTO timer is started.
The connection is still alive though it is kept in the idle state until the moment the
sending application decides to send more bytes through it.

V 1.3 27th-Nov-2023
All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023

All rights reserved © by José María Foces Morán and José María Foces Vivancos 2020-2023
	

8	

Figure 2. Continuation of the example in Fig. 1 assuming segment with SN=2001

gets dropped at time index 4.

